中国科学院| 植物所| 中文版| English| 全文检索

个人简历
王智平,研究生教育学历,博士学位
研 究 组 : 草地生物地球化学研究组
民       族: 汉
研究领域: 陆地生态系统甲烷过程及通量
籍       贯: 安徽省
导师资格: 博士生导师
出生年月: 1965.09
职       称: 研究员
毕业院校: 北京师范大学
入职时间: 1991.7
毕业时间: 2002.06
办公电话: 010-62836635
电子邮件: wangzp5@ibcas.ac.cn
   传真号码:
  • 学习工作经历
  • 科研项目
  • 论文专著
  • 所获奖励
  • 学习经历
    1984.09–1988.06 皖南农学院,学士
    1988.09–1991.06 中国科学院石家庄农业现代化所,硕士
    1999.09–2002.06 北京师范大学,博士

    工作经历
    1991.07–1999.08 中国科学院石家庄农业现代化所,助研、副研
    2002.07–2004.06 中国科学院植物所,博士后
    2004.07–2009.09 中国科学院植物所,副研究员
    2009.10–至今 中国科学院植物所,研究员
    2006.09–2007.12 美国克莱姆松大学,访问学者
    2012.04–2014.03 加拿大爱尔伯特大学,访问学者

    任职经历

  • 国家自然科学基金面上项目“亚热带森林树干的甲烷生成和排放”(32271669)(2023-2026,主持人)

    科技部国家重点研发计划课题“生态系统碳源汇形成的作用机理及效应”(2016YFA0600803)(2016-2021,主持人)

    国家自然科学基金面上项目“植物和土壤的非微生物甲烷生成和排放”(31370493)(2014-2017,主持人)

    国家自然科学基金面上项目“环境压力刺激植物源甲烷排放的研究”(30970518)(2010-2012,主持人)

    国家自然科学基金面上项目“内蒙古温带典型草原植物甲烷排放特征”(30670402)(2007-2009,主持人)


  • 2024

    [1]   Yang W#, Zhang SH#, li A#, Yang JJ#,, Pang S#,, Hu ZH, Wang ZP, Han XG*, Zhang XM*. 2024. Nitrogen deposition mediates more stochastic processes in structuring plant community than soil microbial community in the Eurasian steppe. SCIENCE CHINA Life Sciences, 38212459.

    2022

    [1]   Yang JJ#, Xu MJ#, Pang S#, Gao LL, Zhang ZJ, Wang ZP, Zhang YH, Han XG*, Zhang XM*. 2022. Disturbance-level-dependent post-disturbance succession in a Eurasian steppe. Science China-Life Sciences, 65(1): 142-150.

    [2]   Cui JF, Han SJ, Zhang XM*, Han XG, Wang ZP*. 2022. Temporal–Spatial Variability of Dissolved Carbon in the Tributary Streams of the Lower Yangtze River Basin. Water, 14(24): 4057.

    [3]   Cui JF, Lei BY, Newman C, Zhou YB, Wang ZP*. 2022. Food resources and competition rather than eco-geographic rules explain trait variations in two contrasting rat species: Implications for future climate change. Global Ecology and Conservation, 40: e02339.

    [4]   Xu MJ, Zhu XZ, Chen SP, Pang S, Liu W, Gao LL, Yang W, Li TT, Zhang YH, Luo C, He DD, Wang ZP, Fan Y, Han XG, Zhang XM *. 2022. Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. iScience, 25(3): 103893.

    2021

    [1]   Wang ZP*, Han SJ, Zheng YH, Zhang HY, Wu HH*, Cui JF, Xiao CW, Han XG. 2021. Fencing facility affects plant species and soil organic carbon in temperate steppes. Catena, 196: 104928.

    [2]   Wang ZP*, Li HL, Wu HH, Han SJ, Huang JH, Zhang XM*, Han XG. 2021. Methane concentration in the heartwood of living trees and estimated methane emission on stems in upland forests. Ecosystems, 24: 1485–1499.

    2020

    [1]   Li HL, Zhang XM, Deng FD, Han XG, Xiao CW*, Han SJ, Wang ZP*. 2020. Microbial methane production is affected by secondary metabolites in the heartwood of living trees in upland forests. Trees-Structure and Function, 34(1): 243-254.

    2019及以前

    [1] Zhang XM*, Johnston ER, Wang YS, Yu Q, Tian DS, Wang ZP, Zhang YQ, Gong DZ, Luo C, Liu W, Yang JJ, Han XG. 2019. Distinct drivers of core and accessory components of soil microbial community functional diversity under environmental changes. Msystems, 4(5): e00374-19.

    [2] Wang ZP*, Zhang L, Wang B, Hou LY, Xiao CW, Zhang XM, Han XG. 2018. Dissolved methane in groundwater of domestic wells and its potential emissions in arid and semiarid regions of Inner Mongolia, China. Science of the Total Environment, 626: 1193-1199.

    [3] Zhang XM*, Johnston ER, Barberan A, Ren Y, Wang ZP, Han XG. 2018. Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environmental Microbiology, 20(10): 3862-3875.

    [4] Wang ZP, Han SJ*, Li HL, Deng FD, Zheng YH, Liu HF, Han XG*. 2017. Methane production explained largely by water content in the heartwood of living trees in upland forests. Journal Geophysical Research-Biogeosciences, 122: 2479–2489.

    [5] Gu Q, Chang S, Wang ZP*, Feng JC, Chen QS, Han XG. 2016. Microbial versus non-microbial methane releases from fresh soils at different temperatures. Geoderma, 284: 178–184.

    [6] Wang ZP*, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lü XT, Li LH, Chang S, Zhang YH, Feng JC, Han XG*. 2016. Methane emissions from the trunks of living trees on upland soils. New Phytologist, 211: 429–439.

    [7] Wang ZP, Chang SX*, Chen H, Han XG*. 2013. Widespread non-microbial methane production by organic compounds and the impact of environmental stresses. Earth-Science Reviews, 127: 193–202.

    [8] Wang ZP*, Han XG, Chang SX, Wang B, Yu Q, Hou LY, Li LH. 2013. Soil organic and inorganic carbon contents under various land uses across a transect of continental steppes in Inner Mongolia. Catena, 109: 110–117.

    [9] Hou LY, Wang ZP*, Wang JM, Wang B, Zhou SB, Li LH. 2012. Growing season in situ uptake of atmospheric methane by desert soils in a semiarid region of northern China. Geoderma, 189-190: 415–422.

    [10] Wang ZP*, Xie ZQ, Zhang BC, Hou LY, Zhou YH, Li LH, Han XG. 2011. Aerobic and anaerobic nonmicrobial methane emissions from plant material. Environmental Science & Technology, 45: 9531–9537.

    [11] Wang ZP*, Keppler F, Greule M, Hamilton JTG. 2011. Non-microbial methane emissions from fresh leaves: Effects of physical wounding and anoxia. Atmospheric Environment, 45: 4915–4921.

    [12] Wang ZP, Song Y, Gulledge J, Yu Q, Liu HS, Han XG*. 2009. China’s grazed temperate grasslands are a net source of atmospheric methane. Atmospheric Environment, 43: 2148–2153.

    [13] Wang ZP*, Gulledge J, Zheng JQ, Liu W, Li LH, Han XG. 2009. Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosciences, 6: 615–621.

    [14] Wang ZP*, Han XG, Wang GG, Song Y, Gulledge J. 2008. Aerobic Methane Emission from Plants in the Inner Mongolia Steppe. Environmental Science & Technology, 42: 62–68.

    [15] Wang ZP*, Han XG, Li LH. 2008. Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia. Journal of Environmental Management, 86: 529–534.

    [16] Wang ZP, Li LH*, Han XG, Li ZQ, Chen QS. 2007. Dynamics and allocation of recently photo-assimilated carbon in an Inner Mongolia temperate steppe. Environmental and Experimental Botany, 59: 1–10.

    [17] Wang ZP*, Han XG, Li L H. 2006. Methane emission patches in riparian marshes of the Inner Mongolia. Atmospheric Environment, 40: 5528–5532.

    [18] Wang ZP*, Han XG. 2005. Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes. Atmospheric Environment, 39: 6295–6305.

    [19] Wang ZP*, Han XG, Li LH, Chen QS, Duan Y, Cheng WX. 2005. Methane emission from small wetlands and implications for semiarid region budgets. Journal of Geophysical Research-Atmospheres, 110(D13): D13304.

    [20] Wang ZP*, Ineson P. 2003. Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biology & Biochemistry, 35(3): 427–433.

学习经历
1984.09–1988.06 皖南农学院,学士
1988.09–1991.06 中国科学院石家庄农业现代化所,硕士
1999.09–2002.06 北京师范大学,博士
工作经历
1991.07–1999.08 中国科学院石家庄农业现代化所,助研、副研
2002.07–2004.06 中国科学院植物所,博士后
2004.07–2009.09 中国科学院植物所,副研究员
2009.10–至今 中国科学院植物所,研究员
2006.09–2007.12 美国克莱姆松大学,访问学者
2012.04–2014.03 加拿大爱尔伯特大学,访问学者
任职情况
科研项目

国家自然科学基金面上项目“亚热带森林树干的甲烷生成和排放”(32271669)(2023-2026,主持人)

科技部国家重点研发计划课题“生态系统碳源汇形成的作用机理及效应”(2016YFA0600803)(2016-2021,主持人)

国家自然科学基金面上项目“植物和土壤的非微生物甲烷生成和排放”(31370493)(2014-2017,主持人)

国家自然科学基金面上项目“环境压力刺激植物源甲烷排放的研究”(30970518)(2010-2012,主持人)

国家自然科学基金面上项目“内蒙古温带典型草原植物甲烷排放特征”(30670402)(2007-2009,主持人)


论文专著

2024

[1]   Yang W#, Zhang SH#, li A#, Yang JJ#,, Pang S#,, Hu ZH, Wang ZP, Han XG*, Zhang XM*. 2024. Nitrogen deposition mediates more stochastic processes in structuring plant community than soil microbial community in the Eurasian steppe. SCIENCE CHINA Life Sciences, 38212459.

2022

[1]   Yang JJ#, Xu MJ#, Pang S#, Gao LL, Zhang ZJ, Wang ZP, Zhang YH, Han XG*, Zhang XM*. 2022. Disturbance-level-dependent post-disturbance succession in a Eurasian steppe. Science China-Life Sciences, 65(1): 142-150.

[2]   Cui JF, Han SJ, Zhang XM*, Han XG, Wang ZP*. 2022. Temporal–Spatial Variability of Dissolved Carbon in the Tributary Streams of the Lower Yangtze River Basin. Water, 14(24): 4057.

[3]   Cui JF, Lei BY, Newman C, Zhou YB, Wang ZP*. 2022. Food resources and competition rather than eco-geographic rules explain trait variations in two contrasting rat species: Implications for future climate change. Global Ecology and Conservation, 40: e02339.

[4]   Xu MJ, Zhu XZ, Chen SP, Pang S, Liu W, Gao LL, Yang W, Li TT, Zhang YH, Luo C, He DD, Wang ZP, Fan Y, Han XG, Zhang XM *. 2022. Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. iScience, 25(3): 103893.

2021

[1]   Wang ZP*, Han SJ, Zheng YH, Zhang HY, Wu HH*, Cui JF, Xiao CW, Han XG. 2021. Fencing facility affects plant species and soil organic carbon in temperate steppes. Catena, 196: 104928.

[2]   Wang ZP*, Li HL, Wu HH, Han SJ, Huang JH, Zhang XM*, Han XG. 2021. Methane concentration in the heartwood of living trees and estimated methane emission on stems in upland forests. Ecosystems, 24: 1485–1499.

2020

[1]   Li HL, Zhang XM, Deng FD, Han XG, Xiao CW*, Han SJ, Wang ZP*. 2020. Microbial methane production is affected by secondary metabolites in the heartwood of living trees in upland forests. Trees-Structure and Function, 34(1): 243-254.

2019及以前

[1] Zhang XM*, Johnston ER, Wang YS, Yu Q, Tian DS, Wang ZP, Zhang YQ, Gong DZ, Luo C, Liu W, Yang JJ, Han XG. 2019. Distinct drivers of core and accessory components of soil microbial community functional diversity under environmental changes. Msystems, 4(5): e00374-19.

[2] Wang ZP*, Zhang L, Wang B, Hou LY, Xiao CW, Zhang XM, Han XG. 2018. Dissolved methane in groundwater of domestic wells and its potential emissions in arid and semiarid regions of Inner Mongolia, China. Science of the Total Environment, 626: 1193-1199.

[3] Zhang XM*, Johnston ER, Barberan A, Ren Y, Wang ZP, Han XG. 2018. Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environmental Microbiology, 20(10): 3862-3875.

[4] Wang ZP, Han SJ*, Li HL, Deng FD, Zheng YH, Liu HF, Han XG*. 2017. Methane production explained largely by water content in the heartwood of living trees in upland forests. Journal Geophysical Research-Biogeosciences, 122: 2479–2489.

[5] Gu Q, Chang S, Wang ZP*, Feng JC, Chen QS, Han XG. 2016. Microbial versus non-microbial methane releases from fresh soils at different temperatures. Geoderma, 284: 178–184.

[6] Wang ZP*, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lü XT, Li LH, Chang S, Zhang YH, Feng JC, Han XG*. 2016. Methane emissions from the trunks of living trees on upland soils. New Phytologist, 211: 429–439.

[7] Wang ZP, Chang SX*, Chen H, Han XG*. 2013. Widespread non-microbial methane production by organic compounds and the impact of environmental stresses. Earth-Science Reviews, 127: 193–202.

[8] Wang ZP*, Han XG, Chang SX, Wang B, Yu Q, Hou LY, Li LH. 2013. Soil organic and inorganic carbon contents under various land uses across a transect of continental steppes in Inner Mongolia. Catena, 109: 110–117.

[9] Hou LY, Wang ZP*, Wang JM, Wang B, Zhou SB, Li LH. 2012. Growing season in situ uptake of atmospheric methane by desert soils in a semiarid region of northern China. Geoderma, 189-190: 415–422.

[10] Wang ZP*, Xie ZQ, Zhang BC, Hou LY, Zhou YH, Li LH, Han XG. 2011. Aerobic and anaerobic nonmicrobial methane emissions from plant material. Environmental Science & Technology, 45: 9531–9537.

[11] Wang ZP*, Keppler F, Greule M, Hamilton JTG. 2011. Non-microbial methane emissions from fresh leaves: Effects of physical wounding and anoxia. Atmospheric Environment, 45: 4915–4921.

[12] Wang ZP, Song Y, Gulledge J, Yu Q, Liu HS, Han XG*. 2009. China’s grazed temperate grasslands are a net source of atmospheric methane. Atmospheric Environment, 43: 2148–2153.

[13] Wang ZP*, Gulledge J, Zheng JQ, Liu W, Li LH, Han XG. 2009. Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosciences, 6: 615–621.

[14] Wang ZP*, Han XG, Wang GG, Song Y, Gulledge J. 2008. Aerobic Methane Emission from Plants in the Inner Mongolia Steppe. Environmental Science & Technology, 42: 62–68.

[15] Wang ZP*, Han XG, Li LH. 2008. Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia. Journal of Environmental Management, 86: 529–534.

[16] Wang ZP, Li LH*, Han XG, Li ZQ, Chen QS. 2007. Dynamics and allocation of recently photo-assimilated carbon in an Inner Mongolia temperate steppe. Environmental and Experimental Botany, 59: 1–10.

[17] Wang ZP*, Han XG, Li L H. 2006. Methane emission patches in riparian marshes of the Inner Mongolia. Atmospheric Environment, 40: 5528–5532.

[18] Wang ZP*, Han XG. 2005. Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes. Atmospheric Environment, 39: 6295–6305.

[19] Wang ZP*, Han XG, Li LH, Chen QS, Duan Y, Cheng WX. 2005. Methane emission from small wetlands and implications for semiarid region budgets. Journal of Geophysical Research-Atmospheres, 110(D13): D13304.

[20] Wang ZP*, Ineson P. 2003. Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biology & Biochemistry, 35(3): 427–433.

所获奖励