中国科学院| 植物所| 中文版| English| 全文检索

个人简历
韩兴国,研究生教育学历,博士学位
研 究 组 : 草地生物地球化学研究组
民       族: 汉
研究领域: 生态系统生态学 保护生态学 生..
籍       贯: 山东省
导师资格: 博士生导师
出生年月: 1956.06
职       称: 研究员
毕业院校: 美国佐治亚大学
入职时间: 1982.7
毕业时间: 1989.08
办公电话: (86)-010-62590834
电子邮件: xghan@ibcas.ac.cn
   传真号码:
  • 学习工作经历
  • 科研项目
  • 论文专著
  • 所获奖励
  • 学习经历
    1978.09-1982.07 山东农业大学,学士
    1985.10-1989.09 美国乔治亚大学,博士

    工作经历
    1982.07-1985.10 山东农业大学,讲师
    1989.09-1990.09 美国阿肯色大学,助理教授
    1990.09-1992.09 美国罗格斯大学海岸与海洋研究中心,博士后
    1992.09-1995.10 中国科学院植物研究所,副研究员
    1995.10-1997.02 中国科学院植物研究所,研究员

    任职经历
    1997.02-1998.04 中国科学院西双版纳热带植物园,副主任
    1998.04-2006.04 中国科学院植物研究所,所长兼植物园主任
    1998.04-2012.05 内蒙古草原生态系统定位研究站,站长
    2000.04-2004.09 中国生态学会,副理事长
    2003.10-2008.07 中国植物学会,理事长
    2004.03-2010.03 国际生物多样性计划中国委员会,科学委员会委员
    2008.07-2015.06 中国科学院沈阳应用生态研究所,所长

  • 承担项目

    国家自然科学基金重点项目“氮沉降诱导的草原生态系统地上与地下过程解耦联机理” 主持人

    国家自然科学基金面上项目“利用古土壤序列研究土壤有机碳稳定性、氮可利用性对气候变化的响应” 主持人

    第二次青藏高原综合考察研究子子专题“羌塘高原草畜平衡时空格局及资源空间优化配置” 主持人

    中国科学院战略性先导科技专项(A类)课题“国家自然保护区生境修复与生态系统重构” 主持人

    国家自然科学基金面上项目“氮化合物形态对内蒙古典型草原生态系统凋落物分解影响的化学计量” 主持人

    中国科学院科技服务网络计划课题“北方风沙区生态综合治理技术集成和应用” 主持人

    国家重点研发计划项目“北方农牧交错带草地退化机理及生态修复技术集成示范” 主持人

    国家自然科学基金重点项目“氮沉降对典型草原生态系统生物多样性与功能过程的影响机制” 主持人

    国家自然科学基金国际(地区)合作与交流项目“草原生态系统对极端气候事件的响应:中美联网研究” 主持人

    国家自然科学基金面上项目“氮沉降和刈割对内蒙古典型草原生态系统功能的影响” 主持人

    国家自然科学基金重点项目“内蒙古典型草原生物多样性与生态系统功能关系的控制实验研究” 主持人

    国家自然科学基金创新研究群体项目“北方草地全球变化生态学研究” 主持人

    国家重点基础研究发展计划(973)“北方草地与农牧交错带生态系统维持与适应性管理的科学基础” 主持人

    国家自然科学基金创新研究群体项目“北方草地全球变化生态学研究” 主持人

    中国科学院战略性先导科技专项(B类)“土壤微生物组成与分布格局” 主持人

    国家自然科学基金面上项目克氏针茅草原碳素释放与氮素添加的耦合机制研究主持人

    国家自然科学基金重点项目草原生态系统中生源要素的计量化学关系及其耦合机理主持人

    中国科学院知识创新工程重大项目浑善达克沙地与京北农牧交错区生态环境综合治理实验示范研究主持人

    中国科学院西部行动计划(二期)锡林郭勒草地适应性管理与可持续发展试验示范研究 主持人

    国家重点基础研究发展规划项目2级课题农牧交错带生态系统生产力形成机制主持人

    科技部首都圈防沙治沙应急技术研究与示范项目锡林郭勒草原(锡林浩特)地区防沙治沙技术示范项目负责人

    国家自然科学基金杰出青年基金B类项目锡林郭勒草原景观格局与生态系统功能的综合研究国内合作者

    国家自然科学基金面上项目热带中国陆地生态系统C贮量及其历史变化格局主持人

    人类干扰和土著知识对澜沧江流域生物多样性的影响 项目秘书, 二级课题主持人

    国家环保总局中国自然保护区生态旅游战略及其对策的研究主持人

    国家自然科学基金面上项目片断化热带雨林植物水分利用效率的边缘效应主持人

  • 论文专著:

    2024

    [1]   Jiang LC#, Cheng HH#, Peng Y#, Sun TR, Gao YZ, Wang RZ, Ma YX, Yang JJ, Yu Q, Zhang HY, Han XG*, Ning QS*. 2024. Relative role of soil nutrients vs. carbon availability on soil carbon mineralization in grassland receiving long-term N addition. Soil & Tillage Research, 235: 105864.

    [2]   Zhao RN, Kuzyakov Y, Zhang HY, Wang ZR, Li TP, Shao LY, Jiang LC, Wang RZ, Li MH, Sun OJX, Jiang Y, Han XG*. 2024. Labile carbon inputs offset nitrogen-induced soil aggregate destabilization via enhanced growth of saprophytic fungi in a meadow steppe. Geoderma. 443:116841

    [3]   Yang W#, Zhang SH#, li A#, Yang JJ#,, Pang S#,, Hu ZH, Wang ZP, Han XG*, Zhang XM*. 2024. Nitrogen deposition mediates more stochastic processes in structuring plant community than soil microbial community in the Eurasian steppe. SCIENCE CHINA Life Sciences, 38212459.

    [4]   Zhao M, Loreau M, Ochoa-Hueso R, Zhang HX*, Yang JJ, Zhang YH, Liu HY, Jiang Y, Han XG*. 2024. Decoupled responses of above- and below-ground beta-diversity to nitrogen enrichment in a typical steppe. Ecology Letters, 27:e14339.

     

    2023

    [1] You CH, Wang YB, Tan XR, Cui EQ, Zhang BW, Bian CY, Chen BY, Xu MZ, Han XG, Xia JY, Chen SP*. 2023. Inner Mongolia grasslands act as a weak regional carbon sink: A new estimation based on upscaling eddy covariance observations. Agricultural and Forest Meteorology, 342: 109719.

    [2] Wang YB, You CH, Gao YH, Li YQ, Niu YY, Shao CL, Wang X, Xin XP, Yu GR, Han XG, Chen SP*. 2023. Seasonal variations and drivers of energy fluxes and partitioning along an aridity gradient in temperate grasslands of Northern China. Agricultural and Forest Meteorology, 342: 109736.

    [3] Yang W#, Yang JJ#, Fan Y, Guo QK, Jiang NN, Babalola OO, Han XG, Zhang XM*. 2023. The two sides of resistance-resilience relationship in both aboveground and belowground communities in the Eurasian steppe. New Phytologist, 239: 350-363.

    [4] Su J, Zhang HY, Han XG, Lü RF, Liu L, Jiang Y, Li H, Kuzyakov Y, Wei CZ*. 2023. 5300-Year-old soil carbon is less primed than young soil organic matter. Global Change Biology, 29: 260-275.

    [5] Yang GJ, Stevens C, Zhang ZJ, Lü XT*, Han XG. 2023. Different nitrogen saturation thresholds for above-, below-, and total net primary productivity in a temperate steppe. Global Change Biology, 29: 4586-4594.

    [6] Niu GX*, Wang RZ, Zhou H, Yang JJ*, Lu XK, Han XG, Huang JH*. 2023. Nitrogen addition and mowing had only weak interactive effects on macronutrients in plant-soil systems of a typical steppe in Inner Mongolia. Journal of Environmental Management, 347: 119121.

    [7] Zhang HY#*, Lü XT#, Wei CZ#, Powell JR, Wang XB, Xing DL, Xu ZW, Li HL, Han XG. 2023.β-diversity in temperate grasslands is driven by stronger environmental filtering of plant species with large genomes. Ecology, 104(3): e3941.

    [8] Shao LY, Peng Y, Liu HY, Zhao RN, Jiang LC, Li Y, Han P, Jiang Y, Wei CZ, Han XG, Huang JH*. 2023. Applied phosphorus is maintained in labile and moderately occluded fractions in a typical meadow steppe with the addition of multiple nutrients. Journal of Environmental Management, 345: 118807.

    [9] Sun JM, Zhang B, Pan QM*, Liu W, Wang XL, Huang JH, Chen DM, Wang CH, Han XG. 2023. Non- linear response of productivity to precipitation extremes in the Inner Mongolia grassland. Functional Ecology, 37: 1663-1673.

    [10] Zheng P#*, Zhao RN#, Jiang LC, Yang GJ, Wang YL, Wang RZ, Han XG, Ning QS*. 2023. Increasing nitrogen addition rates suppressed long-term litter decomposition in a temperate meadow steppe. Journal of Plant Ecology, 16(3): rtac078.

    [11] Lü J, Wang RZ*, Sardans J, Peñuelas J, Jiang Y, Han XG. 2023. An integrative review of drivers and responses of grassland phenology under global change. Critical Reviews in Plant Sciences, 42(3): 124-137.

    [12] Luo WT*, Ma W, Song L, Te NW, Chen JQ, Muraina TO, Wilkins K, Griffin-Nolan RJ, Ma TX, Qian JQ, Xu C, Yu Q, Wang ZW, Han XG, Collins SL. 2023. Compensatory dynamics drive grassland recovery from drought. Journal of Ecology, 111:1281-1291.

    [13] Luo WT*, Shi Y, Wilkins K, Song L, Te NW, Chen JQ, Zhang HX, Yu Q, Wang ZW, Han XG, Collins SL. 2023. Plant traits modulate grassland stability during drought and post‐drought periods. Functional Ecology, 37: 2611-2620.

    [14] Luo WT*, Griffin-Nolan RJ, Song L, Te NW, Chen JQ, Shi Y, Muraina TO, Wang ZW, Smith MD, Yu Q, Knapp AK, Han XG, Collins SL. 2023. Interspecific and intraspecific trait variability differentially affect community‐weighted trait responses to and recovery from long‐term drought. Functional Ecology, 37: 504-512.

    [15] Luo WT, Muraina TO, Griffin-Nolan RJ, Te NW, Qian JQ*, Yu Q, Zuo XA, Wang ZW, Knapp AK, Smith MD, Han XG, Colliins SL. 2023. High below‐ground bud abundance increases ecosystem recovery from drought across arid and semiarid grasslands. Journal of Ecology, 111: 2038-2048.

    [16] Qian JQ#, Zhang ZM#, Dong YW, Ma Q, Yu Q, Zhu JL, Zuo XA, Broderick CM, Collins SL, Han XG, Luo WT*. 2023. Responses of bud banks and shoot density to experimental drought along an aridity gradient in temperate grasslands. Functional Ecology, DOI: 10.1111/1365-2435.14301.

    [17] Cai JP, Weiner J, Luo WT, Feng X, Yang GJ, Lu JY, Lü XT, Li MH, Jiang Y*, Han XG*. 2023. Functional structure mediates the responses of productivity to addition of three nitrogen compounds in a meadow steppe. Oecologia, 201(2): 575-584.

    [18] Luo WT*, Muraina TO, Griffin-Nolan RJ, Ma W, Song L, Fu W, Yu Q, Knapp AK, Wang ZW, Han XG, Collins SL. 2023. Responses of a semiarid grassland to recurrent drought are linked to community functional composition. Ecology, 104(2): e3920.

    [19] He NP#*, Yan P#, Liu CC, Xu L, Li MX, Van Meerbeek K, Zhou GS, Zhou GY, Liu SR, Zhou XH, Li SG, Niu SL, Han XG, Buckley TN, Sack L*, Yu GR*. 2023. Predicting ecosystem productivity based on plant community traits. Trends in Plant Science, 28(1): 43-53.

    [20] Wang YL, Niu GX, Wang RZ, Rousk K, Li A, Hasi M, Wang CH, Xue JG, Yang GJ, Lu XT, Jiang Y, Han XG*, Huang JH*. 2023. Enhanced foliar 15N enrichment with increasing nitrogen addition rates: Role of plant species and nitrogen compounds. Global Change Biology, 29(6): 1591-1605.

    [21] Hou SL, Dijkstra FA, Lü XT*, Han XG. 2023. Increases in the dominance of species with higher N:P flexibility exacerbate community N–P imbalances following N inputs. Biogeochemistry, 163: 279-288.

    [22] He P, Ling N*, Lü XT, Zhang HY, Wang C, Wang RZ, Wei CZ, Yao J, Wang XB*, Han XG, Nan ZB. 2023. Contributions of abundant and rare bacteria to soil multifunctionality depend on aridity and elevation. Applied Soil Ecology, 188: 104881.

    [23] Cao JR#, Pang S#, Wang QB*, Willianms MA, Jia X, Dun SS, Wang J, Yang JJ, Zhang YH, Ruan WB, Hu YC, Li LH, Li YC, Han XG. 2023. The sensitivity of belowground ecosystem to long-term Increased nitrogen deposition in a temperate grassland: Root productivity, microbial biomass, and biodiversity. Journal of Geophysical Research-Biogeosciences, 128(6): e2022JG007000.

     

    2022

    [1] Sun JM#, Liu W#, Pan QM, Zhang B, Lü YX, Huang JH, Han XG*. 2022. Positive legacies of severe droughts in the Inner Mongolia grassland. Science Advances, 8: eadd6249.

    [2] Peng Y#, Yang JX#, Leitch I J, Guignard MS, Seabloom EW, Cao D, Zhao FY, Li HL, Han XG, Jiang Y, Leith AR*, Wei CZ*. 2022. Plant genome size modulates grassland community responses to multi-nutrient additions. New Phytologist, 236: 2091-2102.

    [3] Zhao M, Zhang HX, Baskin CC, Wei CZ, Yang JJ, Zhang YH, Jiang Y, Jiang L, Han XG*. 2022. Intra‐annual species gain overrides species loss in determining species richness in a typical steppe ecosystem after a decade of nitrogen enrichment. Journal of Ecology, 110 (8): 1942-1956.

    [4] Su J, Zhang HY, Han XG, Penuelas J, Filimonenko E, Jiang Y, Kuzyakov Y, Wei CZ*. 2022. Low carbon availability in paleosols nonlinearly attenuates temperature sensitivity of soil organic matter decomposition. Global Change Biology, 28: 4180-4193.

    [5] Yang JJ#, Xu MJ#, Pang S#, Gao LL, Zhang ZJ, Wang ZP, Zhang YH, Han XG*, Zhang XM*. 2022. Disturbance-level-dependent post-disturbance succession in a Eurasian steppe. Science China-Life Sciences, 65(1): 142-150.

    [6] Wang RZ#, Yang JJ#, Liu HY#, Sardans J, Zhang YH, Wang XB, Wei CZ, Lü XT, Dijkstra FA, Jiang Y, Han XG*, Peñuelas J. 2022. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology, 103: e3616.

    [7] Pan QM, Symstad AJ, Bai YF, Huang JH, Wu JG, Naeem S, Chen DM, Tian DS, Wang QB, Han XG*. 2022. Biodiversity-productivity relationships in a natural grassland community vary under diversity loss scenarios. Journal of Ecology,110: 210-220.

    [8] Chen JY#, Dong G#, Chen JQ, Jiang SC, Qu LP, Legesse TG, Zhao FY, Tong Q, Shao CL*, Han XG*. 2022. Energy balance and partitioning over grasslands on the Mongolian Plateau. Ecological Indicators, 135: 108560.

    [9] Ning QS, Jiang LC*, Wang RZ, Wang J, Han XG*, Yang JJ*. 2022. Greater soil microbial biomass loss at low frequency of N addition in an Inner Mongolia grassland. Journal of Plant Ecology, 15(4): 721-732.

    [10] Ning QS#, Jiang LC#, Niu GX, Yu Q, Liu JS, Wang RZ, Liao S, Huang JH, Han XG*, Yang JJ*. 2022. Mowing increased plant diversity but not soil microbial biomass under N-enriched environment in a temperate grassland. Plant and Soil, https://doi.org/10.1007/s11104-022-05332-5.

    [11] Cui JF, Han SJ, Zhang XM*, Han XG, Wang ZP*. 2022. Temporal–Spatial Variability of Dissolved Carbon in the Tributary Streams of the Lower Yangtze River Basin. Water, 14(24): 4057.

    [12] Fu W, Chen BD*, Rillig MC, Jansa J, Ma W, Xu C, Luo WT, Wu HH, Hao ZP, Wu H, Zhao AH, Yu Q, Han XG. 2022. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. New Phytologist, 234(6): 2003-2017.

    [13] Fu W, Chen BD*, Jansa J, Wu HH, Ma W, Luo WT, Xu C, Hao ZP, Wu H, Yu Q, Han XG. 2022. Response of root and soil dwelling fungi to extreme drought in a temperate grassland. Soil Biology & Biochemistry, 169: 108670.

    [14] Yang GJ, Hautier Y, Zhang ZJ, Lü XT*, Han XG. 2022. Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 28: 2711-2720.

    [15] Xu MJ, Zhu XZ, Chen SP, Pang S, Liu W, Gao LL, Yang W, Li TT, Zhang YH, Luo C, He DD, Wang ZP, Fan Y, Han XG, Zhang XM *. 2022. Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. iScience, 25(3): 103893.

    [16] Song L, LuoWT*, Griffin-Nolan RJ, Ma W, Cai JP, Zuo XA, Yu Q, Hartmann H, Li MH, Smith MD, Collins SL, Knapp AK, Wang ZW*, Han XG. 2022. Differential responses of grassland community nonstructural carbohydrate to experimental drought along a natural aridity gradient. Science of the Total Environment, 822: 153589.

    [17] Gurmesa GA#, Wang A#, Li SL, Peng SS*, de Vries W, Gundersen P, Ciais P, Phillips, OL, Hobbie EA, Zhu WX, Nadelhoffer K, Xi Y, Bai E, Sun T, Chen DX, Zhou WJ, Zhang YP, Guo YR, Zhu JJ, Duan L, Li DJ, Koba K, Du EZ, Zhou GY, Han XG, Han SJ, YT Fang*. 2022. Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink. Nature Communications, 13(1): 880.

    [18] Niu GX, Wang YL, Wang RZ, Ning QS*, Guan HL, Yang JJ, Lu XK, Han XG, Huang JH*. 2022. Intensity and duration of nitrogen addition jointly alter soil nutrient availability in a temperate grassland. Journal of Geophysical Research: Biogeosciences, 127: e2021JG006698.

    [19] Luo WT, Zuo XA, Griffin-Nolan RJ, Xu C, Sardans J, Yu Q*, Wang ZW*, Han XG, Peñuelas J. 2022. Chronic and intense droughts differentially influence grassland carbon-nutrient dynamics along a natural aridity gradient. Plant and Soil, 473(1-2): 137-148.

    [20] Liang XS, Ma W, Yu Q, Luo WT, Wang ZW, Lü XT*, Han XG. 2022. Conserved responses of nutrient resorption to extreme drought in a grassland: The role of community compositional changes. Functional Ecology, 36(10): 2616-2625.

    [21] Ma W, Liang XS, Wang ZW*, Luo WT, Yu Q, Han XG. 2022. Resistance of steppe communities to extreme drought in northeast China. Plant and Soil, 473(1-2): 181-194.

    [22] Wu H, Yang JJ, Fu W, Rillig MC, Cao ZJ, Zhao AH, Hao ZP, Zhang X, Chen BD*, Han XG. 2022. Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. New Phytologist, 237(1): 279-294.

    [23] Niu GX, Liu L, Wang YL, Guan HL, Ning QS, Liu T, Rousk K, Zhong BQ, Yang JJ, Lu XK, Han XG, Huang JH*. 2022. Effects of decadal nitrogen addition on carbon and nitrogen stocks in different organic matter fractions of typical steppe soils. Ecological Indicators, 114: 109471.

    2021

    [1] Ning QS, Hättenschwiler S, Lü XT, Kardol P, Zhang YH, Wei CZ, Xu CY, Huang JH, Li A, Yang JJ, Wang J, Peng Y, Peñuelas J, Sardans J, He JZ, Xu ZH, Gao YZ*, Han XG*. 2021. Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Global Change Biology, 27(22): 5976-5988.

    [2] Muqier H, Zhang XY, Niu GX, Wang YL, Geng QQ, Quan Q, Chen SP, Han XG*, Huang JH*. 2021. Soil moisture, temperature and nitrogen availability interactively regulate carbon exchange in a meadow steppe ecosystem. Agricultural and Forest Meteorology, 304: 108389.

    [3] Ren TT, He NP*, Liu ZG, Li MX, Zhang JH, Li A, Wei CZ, Lü XT, Han XG*. 2021. Environmental filtering rather than phylogeny determines plant leaf size in three floristically distinctive plateaus. Ecological Indicators, 130: 108049.

    [4] Sun QQ#, Yang JJ#, Wang S, Yang FY, Zhang GM, Wei CZ, Han XG*, Li JS *. 2021. Nitrogen enrichment affects the competition network of aboveground species on the Inner Mongolia steppe. Global Ecology and Conservation, 31: e01826.

    [5] Xu MJ, Li TT, Liu W, Ding JJ, Gao LL, Han XG*, Zhang XM*. 2021. Sensitivity of soil nitrifying and denitrifying microorganisms to nitrogen deposition on the Qinghai–Tibetan plateau. Annals of Microbiology, 71(1): 6.

    [6] Yang JX#, Peng Y#, Han XG*. 2021. Slow recovery of soil methane oxidation potential after cessation of N addition in a typical steppe. Pedobiologia-Journal of Soil Ecology, 85-86: 150709.

    [7] Hou SL#, Hattenschwiler S#, Yang JJ#, Sistla S, Wei HW, Zhang ZW, Hu YY, Wang RZ, Cui SY, Lü XT*, Han XG. 2021. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytologist, 229(1): 296-307.

    [8] Li A*, Gao L, Chen S, Zhao JL, Ujiyad S, Huang JH*, Han XG, Bryan BA. 2021. Financial inclusion may limit sustainable development under economic globalization and climate change. Environmental Research Letters, 16(5): 054049.

    [9] Liu CC#, Muir CD#, Li Y, Xu L, Li MX, Zhang JH, de Boer HJ, Sack L, Han XG, Yu GR, NP He*. 2021. Scaling between stomatal size and density in forest plants. bioRxiv, https://doi.org/10.1101/2021.04.25.441252.

    [10] Liu HY, Wang RZ*, Lü XT, Cai JP, Feng X, Yang GJ, Li H, Zhang YG, Han XG, Jiang Y. 2021. Effects of nitrogen addition on plant-soil micronutrients vary with nitrogen form and mowing management in a meadow steppe. Environmental Pollution, 289: 117969.

    [11] Lü XT*, Hou SL, Reed S, Yin JX, Hu YY, Wei HW, Zhang ZW, Yang GJ, Liu ZY, Han XG. 2021. Nitrogen enrichment reduces nitrogen and phosphorus resorption through changes to species resorption and plant community composition. Ecosystems, 24(3): 602-612.

    [12] Luo WT, Griffin-Nolan, RJ, Ma W, Liu B, Zuo XA, Xu C, Yu Q*, Luo YH, Mariotte P, Melinda MD, Collins SL, Knapp AK, Wang ZW, Han XG. 2021. Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology, 102(10): e03465.

    [13] Luo WT, Wang XG, Auerswald K, Wangle ZW, Bird MI, Still CJ, Lü XT*, Han XG. 2021. Effects of plant intraspecific variation on the prediction of C3/C4 vegetation ratio from carbon isotope composition of topsoil organic matter across grasslands. Journal of Plant Ecology, 14(4):628-637.

    [14] Niu GX#, Hasi M#, Wang RZ, Wang YL, Geng QQ, Hu SY, Xu XH, Yang JJ, Wang CH, Han XG, Huang JH*. 2021. Soil microbial community responses to long-term nitrogen addition at different soil depths in a typical steppe. Applied Soil Ecology, 167: 104054.

    [15] Song YQ#, Yang JJ#, Liu W#, Li TT, Han XG, Zhang XM *. 2021. Different deterministic versus stochastic drivers for the composition and structure of a temperate grassland community. Global Ecology and Conservation, 31: e01866.

    [16] Taofeek OM, Xu C, Yu Q*, Yang YD, Jing MH, Jia XT, Jaman MS, Dam Q, Knapp AK, Collins SL, Luo YQ, Zuo XA, Xin XP, Han XG, Smith MD. 2021. Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. Journal of Ecology, 109(4): 1665-1675.

    [17] Wang S#, Bao XL#, Feng K#, Deng Y*, Zhou WJ, Shao PS, Zheng TT, Yao F, Yang S, Liu SG, Shi RJ, Bai Z, Xie HT, Yu JH, Zhang Y, Zhang YP, Sha LQ, Song QH, Liu YT, Zhou JZ, Zhang YG, Li H, Wang QK, Han XG, Zhu YG, Liang C*. 2021. Warming-driven migration of core microbiota indicates soil property changes at continental scale. Science Bulletin, 66(19): 2025-2035.

    [18] Wang X*, Wang M, Tao YM, Fang NN, Yang GJ, Cai JP, Jiang Y, Han XG, Y FH, Li MH. 2021. Beneficial effects of nitrogen deposition on carbon and nitrogen accumulation in grasses over other species in Inner Mongolian grasslands. Global Ecology and Conservation, 26: e01507.

    [19] Wang XG, Wuyunna*, Lu XT, Yang GJ, Coombs CEO, Du X, Song YT, Zhang FJ, Hou GW, Han XG. 2021. Soil C:N:P stoichiometry as related to nitrogen addition in a meadow steppe of Northern China. 2021. Eurasian Soil Science, 54: 1581-1587.

    [20] Wang ZP*, Han SJ, Zheng YH, Zhang HY, Wu HH*, Cui JF, Xiao CW, Han XG. 2021. Fencing facility affects plant species and soil organic carbon in temperate steppes. Catena, 196: 104928.

    [21] Wang ZP*, Li HL, Wu HH, Han SJ, Huang JH, Zhang XM*, Han XG. 2021. Methane concentration in the heartwood of living trees and estimated methane emission on stems in upland forests. Ecosystems, 24(6): 1485-1499.

    [22] Xiong D#, Wei CZ#, Wang XG, Lü XT, Fang S, Li YB*, Wang XB, Liang WJ, Han XG, Bezemer TM, Li Q*. 2021. Spatial patterns and ecological drivers of soil nematode β‐diversity in natural grasslands vary among vegetation types and trophic position. Journal of Animal Ecology, 90(5): 1367-1378.

    [23] Zhang JH#, Ren TT#, Yang JJ#, Xu, L, Li MX, Zhang YH, Han XG, He NP*. 2021. Leaf multi-element network reveals the change of species dominance under nitrogen deposition. Frontiers in Plant Science, 12: 580340.

    [24] Zhang WH*, Zhang YH, Han XG. 2021. Major advances in plant ecology research in China (2020). Journal of Plant Ecology, 14(5): 995-1001.

    2020

    [1] He NP#*, Li Y#, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Sack L, Yu GR*. 2020. Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. Trends in Ecology & Evolution, 35(10): 908-918.

    [2] Zhang BW*, Hautier Y, Tan XR, You CH, Cadotte MW, Chu CJ, Jiang L, Sui XH, Ren TT, Han XG, Chen SP*. 2020. Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Functional Ecology, 34(12): 2622-2633.

    [3] Wang NN, Li L, Zhang BW, Chen SP, Sun W, Luo Y, Dong KH, Han XG, Huang JH*, Xu XF, Wang CH*. 2020. Population turnover promotes fungal stability in a semi-arid grassland under precipitation shifts. Journal of Plant Ecolgoy, 13(4): 499-509.

    [4] Dong LL, Berg B, Sun T*, Wang ZW*, Han XG. 2020. Response of fine root decomposition to different forms of N deposition in a temperate grassland. Soil Biology & Biochemistry, 147: 107845.

    [5] Wei HW, Wang XG, Li YB, Yang JJ, Wang JF, Lü XT*, Han XG. 2020. Simulated nitrogen deposition decreases soil microbial diversity in a semiarid grassland, with little mediation of this effect by mowing. Pedobiologia, 80: 150644.

    [6] Wang XG, Lü XT*, Zhang HY, Dijkstra FA, Jiang YG, Wang XB, Lu JY, Wuyunna, Wang ZW, Han XG. 2020. Changes in soil C:N:P stoichiometry along an aridity gradient in drylands of northern China. Geoderma, 361: 114087.

    [7] Li HL, Zhang XM, Deng FD, Han XG, Xiao CW*, Han SJ, Wang ZP*. 2020. Microbial methane production is affected by secondary metabolites in the heartwood of living trees in upland forests. Trees-Structure and Function, 34(1): 243-254.

    [8] Ma T, Dai GH, Zhu SS, Chen DM, Chen LT, Lü XT, Wang XB, Zhu JT, Zhang YJ, He JS, Bai YF, Han XG, Feng XJ*. 2020. Vertical variations in plant- and microbial-derived carbon components in grassland soils. Plant and Soil, 446(1-2): 441-455.

    [9] Cao JR#, Pang S#, Wang QB*, Williams MA; Jia X, Dun SS, Yang JJ, Zhang YH, Wang J, Lü XT, Hu YC, Li LH, Li YC, Han XG. 2020. Plant-bacteria-soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Functional Ecology, 34(3): 723-734.

    [10] Xiong D#, Wei CZ#, Wubs ERJ, Veen GJ, Liang WJ, Wang XB, Li Qi*, Van der P, Wim H, Han XG. 2020. Nonlinear responses of soil nematode community composition to increasing aridity. Global Ecology and Biogeography, 29(1): 117-126.

    [11] Pastorello G, Trotta C, Canfora E, Chu HS, Christianson D, Cheah YW, Poindexter C, Chen JQ, Elbashandy A, Humphrey M, Isaac P, Polidori D, Reichstein M, Ribeca A, van Ingen C, Vuichard N, Zhang LM, Amiro B, Ammann C, Arain MA, Ardo J, Arkebauer T, Arndt SK, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini LB, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black TA, Blanken PD, Bohrer G, Boike J, Bolstad PV., Bonal D, Bonnefond JM, Bowling DR, Bracho R, Brodeur J, Brummer C, Buchmann N, Burban B, Burns SP, Buysse P, Cale P, Cavagna M, Cellier P, Chen SP, Chini I, Christensen TR, Cleverly J, Collalti A, Consalvo C, Cook BD, Cook D, Coursolle C, Cremonese E, Curtis PS, D'Andrea E, da Rocha H, Dai XQ, Davis KJ, De CB, de Grandcourt A, De Ligne A, De Oliveira RC, Delpierre N, Desai AR, Di Bella CM, di Tommasi P, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrene E, Dunn A, Dusek J, Eamus D, Eichelmann U, ElKhidir Hatim AM, Eugster W, Ewenz CM, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein AH, Gough CM, Goulden ML, Graf A, Griebel A, Gruening C, Grunwald T, Hammerle, Han SJ, Han XG, Hansen BU, Hanson C, Hatakka J, He YT, Hehn M, Heinesch B, Hinko-Najera N, Hortnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janous D, Jans W, Jassal R, Jiang SC, Kato T, Khomik M, Klatt J, Knohl A, Knox S, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch WL, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li YN, Liddell M, Limousin JM, Lion M, Liska AJ, Lohila A, Lopez-Ballesteros A, Lopez-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Luers J, Ma SY, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis HA, Marras S, Massman W, Mastepanov M, Matamala R, Matthes JH, Mazzenga F, McCaughey H, McHugh I, McMillan AMS, Merbold L, Meyer W, Meyers T, Miller SD, Minerbi S, Moderow U, Monson RK, Montagnani L, Moore CE, Moors E, Moreaux V, Moureaux C, Munger JW, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel W, Olesen JE, Ourcival JM, Papuga SA, Parmentier FJ, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips RP, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober SM, Rambal S, Rannik U, Raz-Yaseef N, Rebmann C, Reed D, de Dios VR, Restrepo-Coupe N, Reverter BR, Roland M, Sabbatini S, Sachs T, Saleska SR, Sanchez-Canete EP, Sanchez-Mejia ZM, Schmid HP, Schmidt M, Schneider K, Schrader F, Schroder I, Scott RL, Sedlak P, Serrano-Ortiz P, Shao CL, Shi PL, Shironya I, Siebicke L, Sigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens RM, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang YH, Tapper N, Thom J, Tomassucci M, Tuovinen JP, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker JP, Walter-Shea E, Wang HM, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Li YL, Zampedri R, Zhang JH, Zhou GY, Zona D, Agarwal D, Biraud S, Torn M, Papale D. 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1): 225.

    [12] 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹*. 2020. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响. 植物生态学报, 44(10): 1059-1072.

    2019

    [1] He NP*, Liu CC, Piao SL, Sack L, Xu L, Luo YQ, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR*. 2019. Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 34(3): 200-210.

    [2] Li YB, Bezemer TM, Yang JJ, Lü XT, Li XY, Liang WJ*, Han XG, Li Q*. 2019. Changes in litter quality induced by N deposition alter soil microbial communities. Soil Biology & Biochemistry, 130: 33-42.

    [3] Wang XB, Yao J, Zhang HY, Wang XG, Li KH, Lü XT, Wang ZW, Zhou JZ, Han XG*. 2019. Environmental and spatial variables determine the taxonomic but not functional structure patterns of microbial communities in alpine grasslands. Science of the Total Environment, 654: 960-968.

    [4] Yang GJ, Lü XT*, Stevens CJ, Zhang GM, Wang HY, Wang ZW, Zhang ZJ, Liu ZY, Han XG. 2019. Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia, 189(3): 769-779.

    [5] Zhang YH#, Feng JC#, Loreau M, He NP, Han XG*, Jiang L*. 2019. Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities. Ecology Letters, 22(4): 563-571.

    [6] Zhang XM*, Johnston ER, Wang YS, Yu Q, Tian DS, Wang ZP, Zhang YQ, Gong DZ, Luo C, Liu W, Yang JJ, Han XG. 2019. Distinct drivers of core and accessory components of soil microbial community functional diversity under environmental changes. Msystems, 4(5): e00374-19.

    [7] Wang J, Gao YZ*, Zhang YH, Yang JJ, Smith MD, Knapp AK, Eissenstat DM, Han XG*. 2019. Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25: 2958-2969.

    [8] Zhang BW, Li WJ, Chen SP*, Tan XR, Wang SS, Chen ML, Ren TT, Xia JY, Huang JH, Han XG. 2019. Changing precipitation exerts greater influence on soil heterotrophic than autotrophic respiration in a semiarid steppe. Agricultural and Forest Meteorology, 271: 413-421.

    [9] Zhang BW, Cadotte MW, Chen SP*, Tan XR, You CH, Ren TT, Chen ML, Wang SS, Li WJ, Chu CJ, Jiang L, Bai YF, Huang JH, Han XG. 2019. Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology, 100(11): e02828.

    [10] Zhu SS#, Dai GH#, Ma T, Chen LT, Chen DM, Lü XT, Wang XB, Zhu JT, Zhang YJ, Bai YF, Han XG, He JS, Feng XJ*. 2019. Distribution of lignin phenols in comparison with plant-derived lipids in the alpine versus temperate grassland soils. Plant and Soil, 439(1-2): 325-338.

    [11] Wu HH, Lü LY, Zhang YL, Xu C, Yang H, Zhou W, Wang WQ, Zhao LR, He NP*, Smith MD, Han XG, Hartley LP, Yu Q*. 2019. Sediment addition and legume cultivation result in sustainable, long‐term increases in ecosystem functions of sandy grasslands. Land Degradation & Development, 30(14): 1667-1676.

    [12] Wang XG, Lü XT*, Dijkstra FA, Zhang HY, Wang XB, Wuyunna, Wang ZW, Feng J, Han XG. 2019. Changes of plant N:P stoichiometry across a 3000-km aridity transect in grasslands of northern China. Plant and Soil, 443(1-2): 107-119.

    [13] Wang XB, Hsu CM, Dubeux JCB Jr, Mackowiak C, Blount A, Han XG, Liao HL*. 2019. Effects of rhizoma peanut cultivars (Arachis glabrata Benth.) on the soil bacterial diversity and predicted function in nitrogen fixation. Ecology and Evolution, 9(22): 12676-12687.

    [14] Ma T#, Dai GH#, Zhu SS, Chen DM, Chen LT, Lu XT, Wang XB, Zhu JT, Zhang YJ, Ma WH, He JS, Bai YF, Han XG, Feng XJ*. 2019. Distribution and Preservation of Root- and Shoot-Derived Carbon Components in Soils Across the Chinese-Mongolian Grasslands. Journal of Geophysical Research-Biogeosciences, 124(2): 420-431.

    [15] Luo WT, Zuo XA*, Griffin-Nolan RJ, Xu C, Ma W, Song L, Helsen K, Lin YC, Cai JP, Yu Q, Wang ZW*, Smith MD, Han XG, Knapp AK. 2019. Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 442(1-2): 343-353.

    [16] Lü XT*, Hu YY, Wolf AA, Han XG. 2019. Species richness mediates within-species nutrient resorption: Implications for the biodiversity-productivity relationship. Journal of Ecology, 107(5): 2346-2352.

    [17] Li TP#, Liu HY#, Wang RZ*, Lü XT, Yang JJ, Zhang YH, He P, Wang ZR, Han XG, Jiang Y*. 2019. Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe. Biogeosciences, 16(14): 2891-2904.

    [18] Hou JF*, Dijkstra FA, Zhang XW, Wang C, Lü XT, Wang P, Han XG, Cheng WX*. 2019. Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China. PeerJ, 7: e6712.

    [19] Komatsu KJ*, Avolio ML, Lemoine NP, Isbell F, Grman E, Houseman G, Koerner SE, Johnson DS, Wilcox KR, Alatalo JM, Anderson JP, Aerts R, Baer SG, Baldwin AH, Bates J, Beierkuhnlein C, Beloter R, Blair J, Bloor JMG, Bohlen PJ, Bork EW, Boughton EH, Bowman WD, Britton AJ, Cahill JF Jr, Chaneton E, Chiariello NR, Cheng J, Collins SL, Cornelissen JC, Du GZ, Eskelinen A, Firn J, Foster B, Gough L, Gross K, Hallett LM, Han XG, Harmens H, Hovenden MJ, Jagerbrand A, Jentsch A, Kern C, Klanderud K, Knapp AK, Kreyling J, Li W, Luo YQ, McCulley RL, McLaren JR, Megonigal JP, Morgan JW, Onipchenko V, Pennings SC, Prevey JS, Price JN, Reich PB, Robinson CH, Russell FL, Sala OE, Seabloom EW, Smith MD, Soudzilovskaia NA, Souza L, Suding K, Suttle KB, Svejcar T, Tilman D, Tognetti P, Turkington R, White S, Xu ZW, Yahdjian L, Yu Q, Zhang PF, Zhang YH. 2019. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 116(36): 17867-17873.

    [20] Hou SL, Lü XT*, Yin JX, Yang JJ, Hu YY, Wei HW, Zhang ZW, Yang GJ, Liu ZY, Han XG. 2019. The relative contributions of intra- and inter-specific variation in driving community stoichiometric responses to nitrogen deposition and mowing in a grassland. Science of the Total Environment, 666: 887-893.

    [21] 赵芳媛, 吕晓涛, 魏存争*, 韩兴国. 2019. 内蒙古草原不同基因组大小植物对氮水添加的响应. 应用生态学报, 30(8): 2675-2681.

    [22] 王聪, 伍星, 傅伯杰, 韩兴国, 陈亚宁, 王克林, 周华坤, 冯晓明, 李宗善. 2019. 重点脆弱生态区生态恢复模式现状与发展方向. 生态学报, 39(20): 7333-7343.

    [23] 李昂, 王扬, 薛建国, 任婷婷, 魏存争, 田秋英, 白文明, 白永飞, 黄建辉, 姜勇, 程玉臣, 孙海莲, 徐柱文, 赵玉金, 韩兴国*. 2019. 北方风沙区生态修复的科学原理、工程实践和恢复效果. 生态学报, 39(20): 7452-7462.

    2018

    [1] Zhang YH, Loreau M, He NP, Wang JB, Pan QM, Bai YF*, Han XG*. 2018. Climate variability decreases species richness and community stability in a temperate grassland. Oecologia, 188: 183-192.

    [2] Wang ZP*, Zhang L, Wang B, Hou LY, Xiao CW, Zhang XM, Han XG. 2018. Dissolved methane in groundwater of domestic wells and its potential emissions in arid and semiarid regions of Inner Mongolia, China. Science of the Total Environment, 626: 1193-1199.

    [3] Dai GH, Ma T, Zhu SS, Liu ZG, Chen DM, Bai YF, Chen LT, He JS, Zhu JT, Zhang YJ, Lü XT, Wang XB, Han XG, Feng XJ*. 2018. Large-scale distribution of molecular components in Chinese grassland soils: the influence of input and decomposition processes. Journal of Geophysical Research-Biogeosciences, 123(1): 239-255.

    [4] Hou SL, Freschet GT, Yang JJ, Zhang YH, Yin JX, Hu YY, Wei HW, Han XG, Lü XT*. 2018. Quantifying the indirect effects of nitrogen deposition on grassland litter chemical traits. Biogeochemistry, 139(3): 261-273.

    [5] Li A*, Wu JG, Zhang XY, Xue JG, Liu ZF, Han XG, Huang JH*. 2018. China's new rural "separating three property rights" land reform results in grassland degradation: Evidence from Inner Mongolia. Land Use Policy, 71: 170-182.

    [6] Luo WT, Wang XG, Sardans J, Wang ZW, Dijkstra FA, Lü XT*, Penuelas J, Han XG. 2018. Higher capability of C3 than C4 plants to use nitrogen inferred from nitrogen stable isotopes along an aridity gradient. Plant and Soil, 428(1-2): 93-103.

    [7] Luo WT, Xu C, Ma W, Yue XY, Liang XS, Zuo XA, Knapp AK, Smith MD, Sardans J, Dijkstra FA, Peuelas J, Bai YF, Wang ZW*, Yu Q*, Han XG. 2018. Effects of extreme drought on plant nutrient uptake and resorption in rhizomatous vs bunchgrass-dominated grasslands. Oecologia, 188(2): 633-643.

    [8] Luo WT, Zuo XA, Ma W, Xu C, Li A, Yu Q, Knapp AK, Tognetti R, Dijkstra FA, Li MH, Han GD, Wang ZW*, Han XG. 2018. Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology, 99(10): 2230-2239.

    [9] Song J, Wan SQ*, Peng SS, Piao SL, Ciais P, Han XG, Zeng DH, Cao GM, Wang QB, Bai WM, Liu LL. 2018. The carbon sequestration potential of China's grasslands. Ecosphere, 9(10): e02452.

    [10] Wang CH, Wang NN, Zhu JX, Liu Y, Xu XF, Niu SL, Yu GR, Han XG, He NP*. 2018. Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Functional Ecology, 32(1): 83-94.

    [11] Wang HY, Wang ZW, Ding R, Hou SL, Yang GJ, Lü XT*, Han XG. 2018. The impacts of nitrogen deposition on community N:P stoichiometry do not depend on phosphorus availability in a temperate meadow steppe. Environmental Pollution, 242: 82-89.

    [12] Wang RZ, Zhang YH, He P, Yin JF, Yang JJ, Liu HY, Cai JP, Shi Z, Feng X, Dijkstra FA, Han XG, Jiang Y*. 2018. Intensity and frequency of nitrogen addition alter soil chemical properties depending on mowing management in a temperate steppe. Journal of Environmental Management, 224: 77-86.

    [13] Wang S#, Wang XB#, Han XG, Deng Y*. 2018. Higher precipitation strengthens the microbial interactions in semi-arid grassland soils. Global Ecology and Biogeography, 27(5): 570-580.

    [14] Wu SH, Zhuang GQ, Bai ZH, Cen Y, Xu SJ, Sun HS, Han XG*, Zhuang XL*. 2018. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium. Global Change Biology, 24(6): 2352-2365.

    [15] Xu ZW, Li M-H, Zimmermann NE, Li SP, Li H, Ren HY, Sun H, Han XG, Jiang Y*, Jiang L*. 2018. Plant functional diversity modulates global environmental change effects on grassland productivity. Journal of Ecology, 106(5): 1941-1951.

    [16] Zhang HY, Lü XT, Knapp AK, Hartmann H, Bai E, Wang XB, Wang ZW, Wang XG, Yu Q*, Han XG*. 2018. Facilitation by leguminous shrubs increases along a precipitation gradient. Functional Ecology, 32(1): 203-213.

    [17] Zhang HY, Lü XT*, Hartmann H, Keller A, Han XG, Trumbore S, Phillips RP. 2018. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales. Global Ecology and Biogeography, 27(7): 875-885.

    [18] Zhang XM*, Johnston ER, Barberan A, Ren Y, Wang ZP, Han XG. 2018. Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environmental Microbiology, 20(10): 3862-3875.

    [19] Zhang XY#, Liu MZ#, Zhao X#, Li YQ#, Zhao W#, Li A*, Chen S, Chen SP, Han XG, Huang JH*. 2018. Topography and grazing effects on storage of soil organic carbon and nitrogen in the northern China grasslands. Ecological Indicators, 93: 45-53.

    [20] Zhang YH*, He NP*, Loreau M, Pan QM, Han XG*. 2018. Scale dependence of the diversity-stability relationship in a temperate grassland. Journal of Ecology, 106(3): 1277-1285.

    [21] Zhang YH#, Wang J#, Stevens CJ, Lü XT*, He NP, Wang CH, Han XG*. 2018. Effects of the frequency and the rate of N enrichment on community structure in a temperate grassland. Journal of Plant Ecology, 11(5): 685-695.

    [22] 朱永官, 沈仁芳, 贺纪正, 王艳芬, 韩兴国, 贾仲君. 中国土壤微生物组:进展与展望. 2018. 中国农业文摘-农业工程, 30(3): 6-12+38.

    2017

    [1] Zhang XM#, Johnston ER#, Li LH, Konstantinidis KT*, Han XG*. 2017. Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. ISME J., 11: 885-895.

    [2] Wang XB, Lü XT, Yao J, Wang ZW, Deng Y, Cheng WX, Zhou JZ, Han XG*. 2017. Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J., 11: 1345-1358.

    [3] Zhang XM*, Johnston ER, Barberan A, Ren Y, Lü XT, Han XG*. 2017. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. Global Change Biology, 23: 4318-4332.

    [4] Hou SL, Yin JX, Sistla S, Yang JJ, Sun Y, Li YY, Lü XT*, Han XG. 2017. Long-term mowing did not alter the impacts of nitrogen deposition on litter quality in a temperate steppe. Ecological Engineering, 102: 404-410.

    [5] Hou SL, Yin JX, Yang JJ, Wei HW, Yang GJ, Hu YY, Han XG, Lü XT*. 2017. Consistent responses of litter stoichiometry to N addition across different biological organization levels in a semi-arid grassland. Plant and Soil, 421(1-2): 191-202.

    [6] Li H, Yang S, Xu ZW, Yan QY, Li XB, van Nostrand JD, He ZL, Yao F, Han XG, Zhou JZ, Deng Y*, Jiang Y*. 2017. Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biology & Biochemistry, 104: 18-29.

    [7] Li YB, Li Q*, Yang JJ, Lü XT, Liang WJ*, Han XG, Bezemer TM. 2017. Home-field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective. Functional Ecology, 31(9): 1792-1801.

    [8] Liu DW#, Zhu WX*, Wang XB#, Pan YP, Wang C, Xi D, Bai E, Wang YS, Han XG, Fang YT*. 2017. Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200 km transect. Biogeosciences, 14(4): 989-1001.

    [9] Liu MZ, Wang ZW*, Li SS, Lü XT, Wang XB, Han XG. 2017. Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Scientific Reports, 7: 10780.

    [10] Lü XT*, Reed S, Hou SL, Hu YY, Wei HW, Lü FM, Cui Q, Han XG. 2017. Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe. Biogeochemistry, 133(3): 295-305.

    [11] Luo WT, Li MH, Sardans J, Lü XT, Wang C, Penuelas J, Wang ZW, Han XG, Jiang Y*. 2017. Carbon and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecology and Evolution, 7(17): 6927-6934.

    [12] Qian JQ, Wang ZW, Klimešová J, Lü XT, Kuang WN, Liu ZM*, Han XG. 2017. Differences in below-ground bud bank density and composition along a climatic gradient in the temperate steppe of northern China. Annals of Botany, 120(5): 755-764.

    [13] Ren HY#, Xu ZW#, Isbell F, Huang JH, Han XG, Wan SQ, Chen SP, Wang RZ, Zeng DH, Jiang Y, Fang YT*. 2017. Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. Ecological Monographs, 87(3): 457-469.

    [14] Wang C, Wei HW, Liu DW, Luo WT, Hou JF, Cheng WX, Han XG, Bai E*. 2017. Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant and Soil, 417 (1-2): 43-52.

    [15] Wang RZ, Lü LY, Creamer CA, Dijkstra FA, Liu HY, Feng X, Yu GQ, Han XG, Jiang Y*. 2017. Alteration of soil carbon and nitrogen pools and enzyme activities as affected by increased soil coarseness. Biogeosciences, 14(8): 2155-2166.

    [16] Wang X, Xu ZW, Yan CF, Luo WT, Wang RZ, Han XG, Jiang Y*, Li MH. 2017. Responses and sensitivity of N, P and mobile carbohydrates of dominant species to increased water, N and P availability in semi-arid grasslands in northern China. Journal of Plant Ecology, 10(3): 486-496.

    [17] Wang ZP, Han SJ*, Li HL, Deng FD, Zheng YH, Liu HF, Han XG*. 2017. Methane production explained largely by water content in the heartwood of living trees in upland forests. Journal of Geophysical Research-Biogeosciences, 122(10): 2479-2489.

    [18] Xu ZW, Ren HY, Li MH, Brunner I, Yin JY, Liu HY, Kong DL, Lü XT, Sun T, Cai JP, Wang RZ, Zhang YY, He P, Han XG, Wan SQ, Jiang Y*. 2017. Experimentally increased water and nitrogen affect root production and vertical allocation of an old-field grassland. Plant and Soil, 412(1-2): 369-380.

    [19] Zhang B#, Zhu JJ#, Pan QM*, Liu YS, Chen SP, Chen DM, Yan Y, Dou SD, Han XG. 2017. Grassland species respond differently to altered precipitation amount and pattern. Environmental and Experimental Botany, 137: 166-176.

    [20] Zhang BW, Tan XR, Wang SS, Chen ML, Chen SP*, Ren TT, Xia JY, Bai YF, Huang JH, Han XG. 2017. Asymmetric sensitivity of ecosystem carbon and water processes in response to precipitation change in a semi-arid steppe. Functional Ecology, 31(6): 1301-1311.

    [21] Zhang YH*, Loreau M, He NP*, Zhang GM, Han XG*. 2017. Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Functional Ecology, 31(8): 1637-1646.

    [22] Zhou C, Busso CA, Yang YG, Zhang Z, Wang ZW, Yang YF, Han XG*. 2017. Effect of mixed salt stress on malondialdehyde, proteins and antioxidant enzymes of Leymus chinensis in three leaf colors. Phyton-International Journal of Experimental Botany, 86: 205-213.

    [23] 褚海燕, 王艳芬, 时玉, 吕晓涛, 朱永官, 韩兴国. 2017. 土壤微生物生物地理学研究现状与发展态势. 中国科学院院刊, 32(6): 585-592.

    [24] 朱永官*, 沈仁芳, 贺纪正, 王艳芬, 韩兴国, 贾仲君. 2017. 中国土壤微生物组:进展与展望. 中国科学院院刊, 32(6): 554-565+542.

    2016

    [1] Zhang YH, Loreau M, Lü XT*, He NP, Zhang GM, Han XG*. 2016. Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology, 22(4):1445-1455.

    [2] Zhang XM#, Johnston ER#, Liu W, Li LH, Han XG*. 2016. Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes. Global Change Biology, 22(1):198-207.

    [3] Zhang BW, Li S, Chen SP*, Ren TT, Yang ZQ, Zhao HL, Liang Y*, Han XG. 2016. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Scientific Reports, 6.

    [4] Wang HJ*, Wang XM, Zhang YL, Mu YJ, Han XG. 2016. Evident elevation of atmospheric monoterpenes due to degradation-induced species changes in a semi-arid grassland. Science of The Total Environment, 541:1499-1503.

    [5] Tian QY, Liu NN, Bai WM, Li LH, Chen JQ, Reich PB, Yu Q, Guo DL, Smith MD, Knapp AK, Cheng WX, Lu P, Gao Y, Yang A, Wang TZ, Li X, Wang ZW, Ma YB, Han XG, Zhang WH*. 2016. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97(1):65-74.

    [6] Tian DS, Niu SL, Pan QM*, Ren TT, Chen SP, Bai YF, Han XG. 2016. Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 30: 490-499.

    [7] Chen DM#, Pan QM#, Bai YF*, Hu SJ, Huang JH, Wang QB, Naeem S, Elser JJ, Wu JG, Han XG. 2016. Effects of plant functional group loss on soil biota and net ecosystem exchange: a plant removal experiment in the Mongolian grassland. Journal of Ecology, 104(3): 734-743.

    [8] Gu Q, Chang SX, Wang ZP*, Feng JC, Chen QS, Han XG. 2016. Microbial versus non-microbial methane releases from fresh soils at different temperatures. Geoderma, 284: 178-184.

    [9] Hoffmann C*, Giese M, Dickhoefer U, Wan HW, Bai YF, Steffens M, Liu CY, Butterbach-Bahl K, Han XG. 2016. Effects of grazing and climate variability on grassland ecosystem functions in Inner Mongolia: Synthesis of a 6-year grazing experiment. Journal of Arid Environments, 135: 50-63.

    [10] Li H, Xu ZW, Yang S, Li XB, Top EM, Wang RZ, Zhang YG, Cai JP, Yao F, Han XG, Jiang Y*. 2016. Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation. Microbial Ecology, 71(4): 974-989.

    [11] Long M, Wu H-H, Smith MD, La Pierre KJ, Lü XT, Zhang HY, Han XG, Yu Q*. 2016. Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland. Plant and Soil, 408(1-2): 475-484.

    [12] Lü LY, Wang RZ*, Liu HY, Yin JF, Xiao JT, Wang ZW, Zhao Y, Yu GQ, Han XG, Jiang Y. 2016. Effect of soil coarseness on soil base cations and available micronutrients in a semi-arid sandy grassland. Solid Earth, 7(2): 549-556.

    [13] Lü XT*, Reed SC, Yu Q, Han XG. 2016. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions. Plant and Soil, 398(1-2): 111-120.

    [14] Luo WT, Dijkstra FA, Bai E, Feng J, Lü XT, Wang C, Wu HH, Li M-H, Han XG, Jiang Y*. 2016. A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry, 127(1): 141-153.

    [15] Luo WT, Sardans J, Dijkstra FA, Penuelas J, Lü XT, Wu HH, Li M-H, Bai E, Wang ZW, Han XG, Jiang Y*. 2016. Thresholds in decoupled soil-plant elements under changing climatic conditions. Plant and Soil, 409(1-2): 159-173.

    [16] Pan QM#, Tian DS#, Naeem S, Auerswald K, Elser JJ, Bai YF, Huang JH, Wang QB, Wang H, Wu JG, Han XG*. 2016. Effects of functional diversity loss on ecosystem functions are influenced by compensation. Ecology, 97(9): 2293-2302.

    [17] Wang C, Liu DW, Luo WT, Fang YT, Wang XB, Lü XT, Jiang Y, Han XG, Bai E*. 2016. Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. Journal of Plant Ecology, 9(5): 576-585.

    [18] Wang XG, Sistla SA, Wang XB, Lü XT*, Han XG. 2016. Carbon and nitrogen contents in particle-size fractions of topsoil along a 3000-km aridity gradient in grasslands of northern China. Biogeosciences, 13(12): 3635-3646.

    [19] Wang ZP*, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lü XT, Li LH, Chang S, Zhang YH, Feng JC, Han XG*. 2016. Methane emissions from the trunks of living trees on upland soils. New Phytologist, 211(2): 429-439.

    [20] Yan CF, Gessler A, Rigling A, Dobbertin M, Han XG, Li MH*. 2016. Effects of mistletoe removal on growth, N and C reserves, and carbon and oxygen isotope composition in Scots pine hosts. Tree Physiology, 36(5): 562-575.

    [21] Yang G, Zhang Z*, Zhang GM, Zhang H, Han XG, Busso CA. 2016. Nitrogen deposition influences the response of Potentilla tanacetifolia to phosphorus addition. Phyton-International Journal of Experimental Botany, 85: 100-107.

    [22] Zhang HY*, Yu Q*, Lü XT, Trumbore SE, Yang JJ, Han XG*. 2016. Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen. Oecologia, 180(4): 1213-1222.

    [23] Zhang XM, Pu ZC, Li YH, Han XG*. 2016. Stochastic processes play more important roles in driving the dynamics of rarer species. Journal of Plant Ecology, 9(3): 328-332.

    [24] Zhang YH, Stevens CJ, Lü XT*, He NP, Huang JH, Han XG*. 2016. Fewer new species colonize at low frequency N addition in a temperate grassland. Functional Ecology, 30(7): 1247-1256.

    [25] 李英滨, 李琪, 杨俊杰*, 吕晓涛, 梁文举, 韩兴国. 2016. 模拟氮沉降对温带草原凋落物质量的影响. 生态学杂志, 35(10): 2732-2737.

    2015

    [1] Zhang YH*, Feng JC, Isbell F, Lü XT*, Han XG*. 2015. Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Scientific Reports, 5: 12558.

    [2] Wang CH, Butterbach-bahl K, Wang QB, Xing XR, Han XG*. 2015. Nitrogen addition and mowing affect microbial nitrogen transformations in a C4 grassland in northern China. European Journal of Soil Science, 66(3): 485-495.

    [3] Ning QS, Gu Q, Shen JP, Lu XT, Yang JJ, Zhang XM, He JZ, Huang JH, Wang H, Xu ZH*, Han XG*. 2015. Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China. Journal of Soils and Sediments, 15(3): 694-704.

    [4] Feng JC, Han X, He NP, Zhang YH*, Zhou LS, Han XG*. 2015. Sheep grazing stimulated plant available soil nitrate accumulation in a temperate grassland. Pakistan Journal of Botany, 47(5): 1865-1874.

    [5] Zhang XM, Liu W, Zhang GM, Jiang L, Han XG*. 2015. Mechanisms of soil acidification reducing bacterial diversity. Soil Biology & Biochemistry, 81: 275-281.

    [6] Zhang HX#, Zhang GM#, Lü XT, Zhou DW*, Han XG*. 2015. Salt tolerance during seed germination and early seedling stages of 12 halophytes. Plant and Soil, 388(1-2): 229-241.

    [7] Lü XT*, Freschet GT, Kazakou E, Wang ZW, Zhou LS, Han XG. 2015. Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence. Plant and Soil, 387(1-2): 69-79.

    [8] Yu Q, Wilcox K, La Pierre K, Knapp AK, Han XG, Smith MD*. 2015. Stoichiometric homeostasis predicts plant species dominance, temporal stability and responses to global change. Ecology, 96(9): 2328-2335.

    [9] Yu Q*, Wu HH, Wang ZW*, Flynn Dan FB, Yang H, Lu FM, Smith M, Han XG. 2015. Long term prevention of disturbance induces the collapse of a dominant species without altering ecosystem function. Scientific Reports, 5: 14320

    [10] Xu ZW#, Ren HY#, Li MH, van Ruijven J, Han XG, Wan SQ, Li H, Yu Q, Jiang Y*, Jiang L*. 2015. Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 103(5): 1308-1316.

    [11] Xu ZW, Ren HY, Cai JP, Wang RZ, He P, Li MH, Lewis BJ, Han XG, Jiang Y*. 2015. Antithetical effects of nitrogen and water availability on community similarity of semiarid grasslands: evidence from a nine-year manipulation experiment. Plant and Soil, 397(1-2): 357-369.

    [12] Ren HY#*, Xu ZW#, Huang JH, Lü XT, Zeng DH, Yuan ZY, Han XG, Fang YT*. 2015. Increased precipitation induces a positive plant-soil feedback in a semi-arid grassland. Plant and Soil, 389(1-2): 211-223.

    [13] Luo WT, Elser JJ, Lü XT, Wang ZW, Bai E, Yan CF, Wang C, Li MH, Zimmermann NE, Han XG, Xu ZW, Li H, Jiang Y*. 2015. Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochemical Cycles, 29(8): 1298-1308.

    [14] Wu JG*, Naeem S, Elser J, Bai YF, Huang JH, Kang L, Pan QM, Wang QB, Hao SG, Han XG. 2015. Testing biodiversity-ecosystem functioning relationship in the world's largest grassland: overview of the IMGRE project. Landscape Ecology, 30(9): 1723-1736.

    [15] Yuan F, Wu JG, Li A*, Rowe H, Bai YF, Huang JH, Han XG. 2015. Spatial patterns of soil nutrients, plant diversity, and aboveground biomass in the Inner Mongolia grassland: before and after a biodiversity removal experiment. Landscape Ecology, 30(9): 1737-1750.

    [16] Filley TR*, Li ML, Zhuang J, Yu GR, Sayler G, Ouyang ZY, Han XG, Zhang XD, Jiang GB, Zhou CH, Wang F, Bickham JW. 2015. Bi-national research and education cooperation in the US-China EcoPartnership for Environmental Sustainability. Journal of Renewable and Sustainable Energy, 7(4): 041512

    [17] Briske DD, Zhao ML*, Han GD, Xiu CB, Kemp DR, Willms W, Havstad K, Kang L, Wang ZW, Wu JG, Han XG, Bai YF. 2015. Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs production efficiency of livestock systems. Journal of Environmental Management, 152: 177-182.

    [18] Luo WT, Nelson PN, Li MH, Cai JP, Zhang YY, Zhang YG, Yang S, Wang RZ, Wang ZW, Wu YN, Han XG, Jiang Y*. 2015. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China. Biogeosciences, 12(23): 7047-7056.

    [19] Wang XB, Van Nostrand JD, Deng Y, Lü XT, Wang C, Zhou JZ, Han XG*. 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiology Ecology, 91(12): fiv133.

    [20] Zhang HY*, Ziegler W, Han XG, Trumbore S, Hartmann H. 2015. Plant carbon limitation does not reduce nitrogen transfer from arbuscular mycorrhizal fungi to Plantago lanceolata. Plant and Soil, 396(1-2): 369-380.

    2014

    [1] Zhang YH, Lü XT*, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG*. 2014. Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20: 3520-3529.

    [2] Zhang XM, Wei HW, Chen QS, Han XG*. 2014.The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biology and Biochemistry, 72: 26-34.

    [3] Han X, Sistla SA, Zhang YH, Lü XT*, Han XG. 2014. Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant and Soil, 382(1-2): 175-187.

    [4] Zhang ZJ, Elser JJ, Cease AJ, Zhang XM, Yu Q, Han XG, Zhang GM*. 2014. Grasshoppers regulate N:P stoichiometric homeostasis by changing phosphorus contents in their frass. PLoS One, 9(8): e103697.

    [5] Zhang YH*, Han X, He NP, Long M, Huang JH, Zhang GM, Wang QB, Han XG*. 2014. Increase in ammonia volatilization from soil in response to N deposition in Inner Mongolia grasslands. Atmospheric Environment, 84: 156-162.

    [6] Li YY*, Lü XT, Wang ZW*, Zhou C, Han XG. 2014. Linking relative growth rates to biomass allocation: the responses of the grass Leymus chinensis to nitrogen addition. Phyton-International Journal of Experimental Botany, 83: 283-289.

    [7] Lü XT*, Dijkstra FA, Kong DL, Wang ZW, Han XG. 2014. Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Scientific Reports, 4: 4817.

    [8] Wang C#, Wang XB#, Liu DW, Wu HH, Lü XT, Fang YT, Cheng WX, Luo WT, Jiang P, Shi J, Yin HQ, Zhou JZ, Han XG*, Bai E*. 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 5: 4799.

    [9] Wang JZ, Gu BH*, Huang JH, Han XG, Lin GH, Zheng FW, Li YC. 2014. Terrestrial contributions to the aquatic food web in the middle Yangtze River. PLoS ONE, 9 (7): e102473.

    [10] Wang XG, Lü XT*, Han XG. 2014. Responses of nutrient concentrations and stoichiometry of senesced leaves in dominant plants to nitrogen addition and prescribed burning in a temperate steppe. Ecological Engineering, 70: 154-161.

    [11] Wei HW, Lü XT*, Lü FM, Han XG. 2014. Effects of nitrogen addition and fire on plant nitrogen use in a temperate steppe. PLoS ONE, 9 (3): e90057.

    [12] Xu H, Su H, Su BY, Han XG, Biswas DK, Li YG*. 2014. Restoring the degraded grassland and improving sustainability of grassland ecosystem through chicken farming: A case study in northern China. Agriculture Ecosystems & Environment, 186: 115-123.

    [13] Xu ZW#*, Ren HY#, Cai JP, Wang RZ, Li M-H, Wan SQ, Han XG, Lewis BJ, Jiang Y. 2014. Effects of experimentally-enhanced precipitation and nitrogen on resistance, recovery and resilience of a semi-arid grassland after drought. Oecologia, 176 (4): 1187-1197.

    [14] Zhang XM, Barberan A, Zhu XZ, Zhang GM*, Han XG*. 2014. Water content differences have stronger effects than plant functional groups on soil bacteria in a steppe ecosystem. PLoS ONE, 9(12): e115798.

    2013

    [1] Wei CZ#, Yu Q#, Bai E, Lü XT, Li Q, Xia JY, Kardol P, Liang WJ, Wang ZW, Han XG*. 2013. Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. Global Change Biology, 19(12): 3688-3697.

    [2] Wang ZP, Chang SX*, Chen H, Han XG*. 2013. Widespread non-microbial methane production by organic compounds and the impact of environmental stresses. Earth-Science Reviews, 127: 193-202.

    [3] Ren HY#, Xu ZW#, Zhang WH, Jiang L, Huang JH*, Chen SP, Wang LX, Han XG. 2013. Linking ethylene to nitrogen-dependent leaf longevity of grass species in a temperate steppe. Annals of Botany, 112(9): 1879-1885.

    [4] Wang ZP*, Han XG, Chang SX, Wang B, Yu Q, Hou LY, Li LH. 2013. Soil organic and inorganic carbon contents under various land uses across a transect of continental steppes in Inner Mongolia. Catena, 109:110-117.

    [5] Zhang YH, He NP, Zhang GM, Huang JH, Wang QB, Pan QM, Han XG*. 2013. Ammonia emissions from soil under sheep grazing in Inner Mongolian grasslands of China. Journal of Arid Land, 5(2):155-165.

    [6] Zhang XM, Liu W, Schloter M, Zhang GM, Chen QS, Huang JH, Li LH, Elser JJ*, Han XG*. 2013. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PloS One, 8(10): e76500.

    [7] Lü XT*, Reed S, Yu Q, He NP, Wang ZW, Han XG.2013. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biology, 19(9): 2775-2784.

    [8] Luo WT, Jiang Y, Lü XT, Wang X, Li MH, Bai E, Han XG, Xu ZW*. 2013. Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China. PloS One, 8: e71749.

    [9] Zhang HY, Wu HH, Yu Q*, Wang ZW, Wei CZ, Long M, Kattge J, Smith M, Han XG*. 2013. Sampling date, leaf age and root size: implications for the study of plant C:N:P stoichiometry. PloS One, 8(4): e60360.

    [10] Chen WW, Wolf B, Zheng XH*, Yao ZS, Butterbach-Bahl K, Bruggemann N, Han SH, Liu CY, Han XG. 2013. Carbon dioxide emission from temperate semiarid steppe during the non-growing season. Atmospheric Environment, 64: 141-149.

    [11] Giese M, Brueck H, Gao YZ*, Lin S, Steffens M, Kogel-Knabner I, Glindemann T, Susenbeth A, Taube F, Butterbach-Bahl K, Zheng XH, Hoffmann C, Bai YF, Han XG. 2013. N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecological Monographs, 83(2): 195-219.

    [12] Zhang XM, Chen QS, Han XG*. 2013. Soil bacterial communities respond to mowing and nutrient addition in a steppe ecosystem. PLoS ONE, 8(12): e84210.

    [13] Zhang XM, Zhang GM, Chen QS, Han XG*. 2013. Soil bacterial communities respond to climate changes in a temperate steppe. PLoS ONE, 8(11): e78616.

    [14] 史胜南, 于占源*, 曾德慧, 韩兴国. 2013. 牧鸡密度与取样时间对沙质草地土壤氮素有效性的影响. 生态学杂志, 32 (8): 2120-2125.

    [15] 徐常青, 陈君*, 韩兴国, 乔海莉, 郭昆, 于晶, 魏建健. 2013. 大功率微波防治大棚甜瓜及盆栽黄瓜根结线虫研究. 中国蔬菜, (2): 76-81.

    [16] 张云海, 何念鹏, 张光明, 黄建辉, 韩兴国*. 2013. 氮沉降强度和频率对羊草叶绿素含量的影响. 生态学报, 33(21): 6786-6794.

    2012

    [1] He NP, Zhang YH, Dai JZ, Han XG, Baoyin TGT, Yu GR*. 2012. Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia. Journal of Geographical Sciences, 22(5): 859-873.

    [2] He NP*, Zhang YH, Dai JZ, Han XG, Yu GR. 2012. Losses in Carbon and Nitrogen Stocks in Soil Particle-Size Fractions along Cultivation Chronosequences in Inner Mongolian Grasslands. Journal of Environmental Quality, 41(5):1507-1516.

    [3] He NP, Chen QS*, Han XG, Yu GR, Li LH. 2012. Warming and increased precipitation individually influence soil carbon sequestration of Inner Mongolian grasslands, China. Agriculture Ecosystems & Environment, 158:184-191.

    [4] Liu J, Wu JG*, Liu FQ, Han XG. 2012. Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China. Applied Energy, 93: 305-318.

    [5] Liu YS, Pan QM*, Zheng SX, Bai YF, Han XG. 2012. Intra-seasonal precipitation amount and pattern differentially affect primary production of two dominant species of Inner Mongolia grassland. Acta Oecologica-International Journal of Ecology, 44:2-10(SI).

    [6] Lü XT*, Freschet GT, Flynn DFB, Han XG. 2012. Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology, 100(1): 144-150.

    [7] Lü XT, Kong DL, Pan QM, Simmons ME, Han XG*. 2012. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia, 168: 301-310.

    [8] Lü XT, Lü FM, Zhou LS, Han X, Han XG*. 2012. Stoichiometric response of dominant grasses to fire and mowing in a semi-arid grassland. Journal of Arid Environments, 78: 154-160.

    [9] Wang HJ, Xia JY, Mu YJ, Nie L, Han XG, Wan SQ*. 2012. BVOCs emission in a semi-arid grassland under climate warming and nitrogen deposition. Atmospheric Chemistry and Physics, 12: 3809-3819.

    [10] Wei CZ*, Zheng HF, Li Q, Lv XT, Yu Q, Zhang HY, Chen QS, He NP, Kardol P, Liang WJ, Han XG*. 2012. Nitrogen addition regulates soil nematode community composition through ammonium suppresssion. PloS One, 7: e43384.

    [11] Wu HH, Wiesmeier M*, Yu Q, Steffens M, Han XG, Kogel-Knabner I. 2012. Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 48: 305-313.

    [12] Zhang P, Chen SP, Zhang WL, Miao HX, Chen JQ, Han XG, Lin GH*. 2012. Biophysical regulations of NEE light response in a steppe and a cropland in Inner Mongolia. Journal of Plant Ecology-UK, 5: 238-248.

    [13] Zhang XM, Han XG*. 2012. Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland. Journal of Environmental Sciences-China, 24(8): 1483-1491.

    [14] Bai YF*, Wu JG, Clark CM, Pan QM, Zhang LX, Chen SP, Wang QB, Han XG. 2012. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 49(6): 1204-1215.

    [15] Tian DS, Pan QM*, Simmons M, Chaolu H, Du BH, Bai YF, Wang H, Han XG. 2012. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 years of nutrient addition. PLoS ONE, 7(9): e42833.

    [16] Wu H, Dannenmann M*, Wolf B, Han XG, Zheng X, Butterbach-Bahl K. 2012. Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia. Ecosphere, 3 (4): 34.

    [17] Xu ZW, Wan SQ, Ren HY, Han XG, Li M-H, Cheng WX, Jiang Y*. 2012. Effects of water and nitrogen addition on species turnover in temperate grasslands in Northern China. PLoS ONE, 7 (6): e39762.

    [18] Xu ZW, Wan SQ, Ren HY, Han XG, Jiang Y*. 2012. Influences of land use history and short-term nitrogen addition on community structure in temperate grasslands. Journal of Arid Environments, 87: 103-109.

    [19] Yu Q*, Wu HH, He NP, Lü XT, Wang ZP, Elser JJ, Wu JG, Han XG*. 2012. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass. PLoS ONE, 7 (3): e32162.

    [20] Zhang X*, Wang Q, Gilliam FS, Bai W, Han X, Li L. 2012. Effect of nitrogen fertilization on net nitrogen mineralization in a grassland soil, northern China. Grass and Forage Science, 67 (2): 219-230.

    [21] 董宁, 韩兴国, 邬建国*. 2012. 内蒙古鄂尔多斯市城市化时空格局变化及其驱动力. 应用生态学报, 4: 1097-1103.

    [22] 何念鹏*, 韩兴国, 于贵瑞, 代景忠. 2012. 火烧对长期封育草地土壤碳固持效应的影响. 生态学报, 32(14): 4388-4395.

    [23] 何念鹏*, 韩兴国, 于贵瑞. 2012. 内蒙古放牧草地土壤碳固持速率和潜力. 生态学报, 32: 844-851.

    [24] 王玮, 邬建国*, 韩兴国. 2012. 内蒙古典型草原土壤固碳潜力及其不确定性的估算. 应用生态学报, 23: 29-37.

    2011

    [1] Butterbach-Bahl K*, Koegel-Knabner I, Han XG. 2011. Steppe ecosystems and climate and land-use changes—vulnerability, feedbacks and possibilities for adaptation. Plant and Soil, 340: 1-6.

    [2] Chen WW, Wolf B, Zheng XH*, Yao ZS, Butterbach-Bahl K, Bruggemann N, Liu CY, Han SH, Han XG. 2011. Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability. Global Change Biology, 17: 2803-2816.

    [3] He NP*, Han XG, Yu GR, Chen QS. 2011. Divergent changes in plant community composition under 3-decade grazing exclusion in continental steppe. PLoS ONE, 6 (11): e26506.

    [4] He NP, Zhang YH, Yu Q, Chen QS, Pan QM, Zhang GM, Han XG*. 2011. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe. Ecosphere, 2 (1): art8.

    [5] Jiang LL, Han XG*, Dong N, Wang YF, Kardol P. 2011. Plant species effects on soil carbon and nitrogen dynamics in a temperate steppe of northern China. Plant and Soil, 346: 331-347.

    [6] Kong DL*, Wu HF, Zeng H, Lü XT, Simmons M, Wang M, Sun XF, Han XG*. 2011. Plant functional group removal alters root biomass and nutrient cycling in a typical steppe in Inner Mongolia, China. Plant and Soil, 346: 133-144.

    [7] Liu JF, Sun OJ*, Jin HM, Zhou ZY, Han XG. 2011. Application of two remote sensing GPP algorithms at a semiarid grassland site of North China. Journal of Plant Ecology, 4(4): 302-312.

    [8] Liu YS, Pan QM*, Liu HD, Bai YF, Simmons M, Dittert K, Han XG. 2011. Plant responses following grazing removal at different stocking rates in an Inner Mongolia grassland ecosystem. Plant and Soil, 340: 199-213.

    [9] Lü FM#, Lü XT#, Liu W, Han X, Zhang GM, Kong DL, Han XG*. 2011. Carbon and nitrogen storage in plant and soil as related to nitrogen and water amendment in a temperate steppe of northern China. Biology and Fertility of Soils, 47: 187-196.

    [10] Lü XT, Cui Q, Wang QB, Han XG*. 2011. Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. Ecological Engineering, 37: 534-538.

    [11] Pan QM*, Bai YF, Wu JG, Han XG. 2011. Hierarchical plant responses and diversity loss after nitrogen addition: testing three functionally-based hypotheses in the Inner Mongolia grassland. PLoS ONE, 6(5): e20078.

    [12] Ren HY, Xu ZW, Huang JH*, Clark C, Chen SP, Han XG. 2011. Nitrogen and water addition reduce leaf longevity of steppe species. Annals of Botany, 107(1): 145-155.

    [13] Wang CH, Butterbach-Bahl K, Han Y, Wang QB, Zhang LH, Han XG, Xing XR*. 2011. The effects of biomass removal and N additions on microbial N transformations and biomass at different vegetation types in an old-field ecosystem in northern China. Plant and Soil, 340: 397-411.

    [14] Wang ZP*, Xie ZQ, Zhang BC, Hou LY, Zhou YH, Li LH, Han XG. 2011. Aerobic and anaerobic nonmicrobial methane emissions from plant material. Environmental Science & Technology, 45: 9531-47.

    [15] Wu HH, Dannenmann M*, Fanselow N, Wolf B, Yao ZS, Wu X, Brüggemann N, Zheng XH, Han XG, Dittert K. 2011. Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant and Soil, 340: 127-139.

    [16] Yang H, Auerswald K, Bai YF*, Han XG. 2011. Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China. Plant and Soil, 340: 303-313.

    [17] Yu Q, Elser JJ, He NP, Wu HH, Chen QS, Zhang GM, Han XG*. 2011. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166: 1-10.

    [18] Zhang GM, Han XG, Elser JJ*. 2011. Rapid top–down regulation of plant C:N:P stoichiometry by grasshoppers in an Inner Mongolia grassland ecosystem. Oecologia, 166: 253-264.

    [19] Zhang X, Bai W, Gilliam FS, Wang Q, Han X, Li L*. 2011. Effects of in situ freezing on soil net nitrogen mineralization and net nitrification in fertilized grassland of northern China. Grass and Forage Science, 66: 391-401.

    [20] Zhang XM#, Liu W#, Bai YF, Zhang GM, Han XG*. 2011. Nitrogen deposition mediates the effects and importance of chance in changing biodiversity. Molecular Ecology, 20: 429-438.

    [21] 何念鹏*, 韩兴国, 于贵瑞. 2011. 长期封育对不同类型草地碳贮量及其固持速率的影响. 生态学报, 31 (15): 4270-4276.

    2010年及以前

    [1] Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH*. 2010. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 16 (4): 1306-1316.

    [2] Bai Y*, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG. 2010. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 16: 358-372.

    [3] Chen QS, Wang QB, Han XG, Wan SQ, Li LH*. 2010. Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Global Biogeochemical Cycles: doi:10.1029/2009GB003538.

    [4] Chen WW, Wolf B, Yao ZS, Brueggemann N, Butterbach-Bahl K, Liu CY, Han SH, Han XG, Zheng XH*. 2010. Annual methane uptake by typical semiarid steppe in Inner Mongolia. Journal of Geophysical Research-Atmospheres, 115: D15108.

    [5] Cui Q#, Lü XT#, Wang QB, Han XG*. 2010. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant and Soil, 334:209-219.

    [6] Jiang LL, Han XG*, Zhang GM, Kardol P. 2010. The role of plant–soil feedbacks and land-use legacies in restoration of a temperate steppe in northern China. Ecological Research, 25:1101-1111.

    [7] Kong DL*, Wu H, Wang M, Simmons M, Lü X, Yu Q, Han X*. 2010. Structural and chemical differences between shoot- and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant and Soil, 336: 209-217.

    [8] Liu P, Huang JH*, Sun OJ, Han XG. 2010. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 162:771-780.

    [9] Lü XT, Wei CZ, Cui Q, Zhang YH, Han XG*. 2010. Interactive effects of soil nitrogen and water availability on leaf mass loss in a temperate steppe. Plant and Soil, 331:497-504.

    [10] Lü XT, XG Han*. 2010. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 327:481-491.

    [11] Miao BH, Han XG, Zhang WH*. 2010. The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Annals of Botany, 105:967-973.

    [12] Wang CH, Han XG, Xing XR*. 2010. Effects of grazing exclusion on soil net nitrogen mineralization and nitrogen availability in a temperate steppe in northern China. Journal of Arid Environments, 74: 1287-1293.

    [13] Wang JZ, Huang JH*, Wu JG, Han XG, Lin GH. 2010. Ecological consequences of the Three Gorges Dam: insularization affects foraging behavior and dynamics of rodent populations. Frontiers in Ecology and the Environment 8:13-19.

    [14] Wolf B, Zheng XH, Brueggemann N, Chen WW, Dannenmann M, Han XG, Sutton MA, Wu HH, Yao ZS, Butterbach-Bahl K*. 2010. Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature, 464 (7290): 881-884.

    [15] Xu ZW, Wan SQ, Zhu GL, Ren HY, Han XG*. 2010. The influence of historical land use and water availability on grassland restoration. Restoration Ecology, 18: 217-225.

    [16] Yu Q#, Chen QS#, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG*. 2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters 13:1390-1399.

    [17] Zhang GM, Han XG*. 2010. N:P stoichiometry in Ficus racemosa and its mutualistic pollinator. Journal of Plant Ecology, 3: 123-130.

    [18] 贺金生, 韩兴国. 2010. 生态化学计量学:探索从个体到生态系统的统一化理论. 植物生态学报, 34 (1): 2-6.

    [19] Chen SP*, Chen JQ, Lin GH, Zhang WL, Miao HX, Wei L, Huang JH, Han XG. 2009. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agricultural and Forest Meteorology. 149: 1800-1809.

    [20] Cheng WX, Chen QS, Xu YQ, Han XG, Li LH*. 2009. Climate and ecosystem N-15 natural abundance along a transect of Inner Mongolian grasslands: Contrasting regional patterns and global patterns. Global Biogeochemical Cycles, 23: GB2005.

    [21] Gao YZ, Giese M, Han XG, Wang DL, Zhou ZY, Brueck H, Lin S, Taube F*. 2009. Land use and drought interactively affect interspecific competition and species diversity at the local scale in a semiarid steppe ecosystem. Ecological Research, 24 (3): 627-635.

    [22] Han XG, Owens K, Wu XB*, Wu JG, Huang JH. 2009. The grasslands of Inner Mongolia: a special feature. Rangeland Ecology and Management ,62: 303-304.

    [23] He NP*, Wu L, Wang YS, Han XG. 2009. Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in northern China. Geoderma. 150: 302-308.

    [24] Li CP, Sun OJ*, Xiao CW, Han XG. 2009. Differences in Net Primary Productivity Among Contrasting Habitats in Artemisia ordosica Rangeland of Northern China. Rangeland Ecology & Management. 62: 345-350.

    [25] Liu CY, Hoist J, Yao ZS, Brueggemann N, Butterbach-Bahl K, Han SH, Han XG, Tas B, Susenbeth A, Zheng XH*. 2009. Growing season methane budget of an Inner Mongolian steppe. Atmospheric Environment, 43 (19): 3086-3095.

    [26] Liu CY, Holst J, Yao ZS, Brueggemann N, Butterbach-Bahl K, Han SH, Han XG, Zheng XH*. 2009. Sheepfolds as "hotspots" of nitric oxide (NO) emission in an Inner Mongolian steppe. Agriculture Ecosystems & Environment, 134 (1-2): 136-142.

    [27] Liu HJ, Han XG*, Li LH, Huang JH, Liu HS, Li X. 2009. Grazing density effects on cover, species composition, and nitrogen fixation of biological soil crust in an Inner Mongolia steppe. Rangeland Ecology and Management, 62: 321-327.

    [28] Liu P, Huang JH*, Han XG, Sun OJ. 2009. Litter decomposition in semi-arid grassland of Inner Mongolia, China. Rangeland Ecology and Management, 62: 305-313.

    [29] Miao HX, Chen SP, Chen JQ, Zhang WL, Zhang P, Wei L, Han XG, Lin GH*. 2009. Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes. Agricultural and Forest Meteorology, 149 (11): 1810-1819.

    [30] Niu SL, Yang HJ, Zhang Z, Wu MY, Lu Q, Li LH, Han XG, Wan SQ*. 2009. Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems, 12 (6): 915-926.

    [31] Wang QB*, Zhang L, Li LH, Bai YF, Cao JR, Han XG. 2009. Changes in carbon and nitrogen of Chernozem soil along a cultivation chronosequence in a semi-arid grassland. European Journal of Soil Science. 60: 916-923.

    [32] Wang ZP*, Gulledge J, Zheng JQ, Liu W, Li LH, Han XG. 2009. Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosciences, 6: 615-621.

    [33] Wang ZP, Song Y, Gulledge J, Yu Q, Liu HS, Han XG*. 2009. China’s grazed temperate grasslands are a net source of atmospheric methane. Atmospheric Environment, 43: 2148-2153.

    [34] Wilske B*, Lu N, Wei L, Chen SP, Zha TG, Liu CF, Xu WT, Noormets A, Huang JH, Wei YF, Chen J, Zhang ZQ, Ni J, Sun G, Guo K, McNulty S, Ranjeet J, Han XG, Lin GH*, Chen JQ. 2009. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. Journal of Environmental Management. 90: 2762-2770.

    [35] Zhao W, Chen SP, Han XG, Lin GH*. 2009. Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecological Research, 24: 99-108.

    [36] Zhou LS , Huang JH, Lv FM, Han XG*. 2009. Effects of prescribed burning and seasonal and interannual climate variation on nitrogen mineralization in a typical steppe in Inner Mongolia. Soil Biology & Biochemistry, 41: 796-803.

    [37] 沙琼, 黄建辉, 白永飞, 韩兴国*. 2009. 植物功能群去除对内蒙古典型草原羊草群落土壤碳、氮库的影响. 应用生态学报, 20 (6): 1305-1309.

    [38] 孙晓芳, 黄建辉, 王猛, 韩兴国*. 2009. 内蒙古草原凋落物分解对生物多样性变化的响应. 生物多样性, 17 (4): 397-405.

    [39] 杨浩, 白永飞*, 李永宏, 韩兴国. 2009. 内蒙古典型草原物种组成和群落结构对长期放牧的响应. 植物生态学报, 33 (3): 499-507.

    [40] 张璐, 黄建辉, 白永飞, 韩兴国*. 氮素添加对内蒙古羊草草原净氮矿化的影响. 植物生态学报, 33 (3) (2009): 563-569.

    [41] Bai YF*, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG. 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89: 2140-2153.

    [42] Biswas DK, Xu H, Li YG*, Sun JZ, Wang XZ, Han XG, Jiang GM*. 2008. Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biology. 14: 46-59.

    [43] Han XG, Ma H, Liu CM. 2008. A change of course: JIPB to focus on fundamental questions in plant sciences. Journal of Integrative Plant Biology, 50 (1): 1-1.

    [44] He NP*, Yu Q, Wu L, Wang YS, Han XG. 2008. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biology & Biochemistry. 40: 2952-2959.

    [45] John R*, Chen JQ, Lu N, Guo K, Liang CZ, Wei YF, Noormets A, Ma KP, Han XG. 2008. Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia. Remote Sensing of Environment. 112: 2018-2032.

    [46] Liu CY, Holst J, Brueggemann N, Butterbach-Bahl K, Yao ZS, Han SH, Han XG, Zheng XH*. 2008. Effects of irrigation on nitrous oxide, methane and carbon dioxide fluxes in an Inner Mongolian steppe. Advances in Atmospheric Sciences, 25 (5): 748-756.

    [47] Sun SF, Huang JH*, Han XG, Lin GH. 2008. Comparisons in water relations of plants between newly formed riparian and non-riparian habitats along the bank of Three Gorges Reservoir, China. Trees-Structure and Function, 22: 717-728.

    [48] Wu L, He N*, Wang Y, Han XG. 2008. Storage and dynamics of carbon and nitrogen in soil after grazing exclusion in Leymus chinensis grasslands of northern China. Journal of Environmental Quality, 37 (2): 663-668.

    [49] Wang ZP*, Han XG, Li LH. 2008. Effects of grasslands conversion to croplands on soil organic carbon in the temperate Inner Mongolia. Journal of Environmental Management, 86: 529-534.

    [50] Wang ZP*, Han XG, Wang G, Song Y, Gulledge A. 2008. Aerobic methane emission from plants in the Inner Mongolia steppe. Environmental Science & Technology, 42: 62-68.

    [51] Zhang JF, Han XG*. 2008. N2O Emission from the Semi-arid Ecosystem under Mineral Fertilizer (urea and superphosphate) and Increased Precipitation in Northern China. Atmospheric Environment, 42: 291-302.

    [52] Zhang XL, Wang QB*, Li LH, Han XG. 2008. Seasonal variations in nitrogen mineralization under three land use types in a grassland landscape. Acta Oecologia, 34: 322-330.

    [53] Zhou ZY, Sun OJ*, Luo ZK, Jin HM, Chen QS, Han XG. 2008. Variation in small-scale spatial heterogeneity of soil properties and vegetation with different land use in semiarid grassland ecosystem. Plant and Soil, 310 (1-2): 103-112.

    [54] 刘洪升, 刘华杰, 王智平*, 徐明, 韩兴国, 李凌浩. 2008. 土壤呼吸的温度敏感性. 地理科学进展, 27: 51-60.

    [55] 袁飞*, 韩兴国, 葛剑平, 邬建国. 2008. 内蒙古锡林河流域羊草草原净初级生产力及其对全球气候变化的响应. 应用生态学报, 19: 2168-2176.

    [56] Bai YF, Wu GJ, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG*. 2007. Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 44: 1023-1034.

    [57] Chen SP, Bai YF, Lin GH, Huang JH, Han XG*. 2007. Variations in 13C values among major plant community types in the Xilin River Basin, Inner Mongolia, China. Australian Journal of Botany, 55: 48-54.

    [58] Chen SP, Bai YF, Lin GH, Huang JH, Han XG*. 2007. Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China. Journal of Arid Environments, 71: 12-28.

    [59] Gao Y, Wang S*, Han X, Chen Q, Zhou Z, Patton BD. 2007. Defoliation, nitrogen, and competition: effects on plant growth and resource allocation of Cleistogenes squarrosa and Artemisia frigida. Journal of Plant Nutrition and Soil Science, 170: 115-122.

    [60] Holst J, Liu CY, Bruggemann N*, Butterbach-Bahl K, Zheng XH, Wang YS, Han SH, Yao ZS, Yue J, Han XG. 2007. Microbial N turnover and N-Oxide (N2O/NO/NO2) fluxes in semi-arid grassland of Inner Mongolia. Ecosystems, 10: 623-634.

    [61] Holst J, Liu CY, Yao ZS, Bruggemann N, Zheng XH, Han XG, Butterbach-Bahl K*. 2007. Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant and Soil, 296 (1-2): 209-226.

    [62] Kang L*, Han XG, Zhang Z, Sun OJ. 2007. Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of The Royal Society of London Series B-Biological Sciences, 362: 997-1008.

    [63] Li G, Jiang GM*, Li YG, Liu MZ, Peng Y, Li LH, Han XG. 2007. A new approach to the fight against desertification in Inner Mongolia. Environmental Conservation, 34: 95-97.

    [64] Liu CY, Holst J, Bruggemann N, Butterbach-Bahl K, Yao ZS, Yue J, Han SH, Han XG, Krummelbein J, Horn R, Zheng XH*. 2007. Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment, 41: 5948-5958.

    [65] Liu P, Sun OJ, Huang JH*, Li LH, Han XG. 2007. Nonadditive effects of litter mixtures on decomposition and correlation with initial litter N and P concentrations in grassland plant species of northern China. Biology and Fertility of Soils, 44: 211-216.

    [66] Wang ZP, Li LH*, Han XG, Li ZQ, Chen QS.2007. Dynamics and allocation of recently photo-assimilated carbon in an Inner Mongolia temperate steppe. Environmental and Experimental Botany, 59: 1-10.

    [67] Zhang WL, Chen SP, Chen J, Wei L, Han XG, Lin GH*. 2007. Biophysical regulations of carbon fluxes of a steppe and a cultivated cropland in semiarid Inner Mongolia. Agricultural and Forest Meteorology, 146: 216-229.

    [68] Zhou ZY, Sun OJ*, Huang JH, Li LH, Liu P, Han XG. 2007. Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China. Biogeochemistry, 82: 127-138.

    [69] 牛书丽, 韩兴国, 马克平, 万师强*. 2007. 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31: 262-271.

    [70] 鲍雅静*, 李政海, 韩兴国, 韩国栋, 仲延凯. 2007. 内蒙古羊草草原植物种能量含量及其在群落中的作用 (英文). 生态学报, 27 (11): 4443-4451.

    [71] Jiang GM*, Han XG, Wu JG. 2006. Restoration and management of the Inner Mongolia Grassland requires a sustainable strategy. AMBIO, 35: 269-270.

    [72] Li HT*, Han XG, Wu JG. 2006. Variant scaling relationship for mass-density across tree-dominated communities. Journal of Integrative Plant Biology, 48: 268-277.

    [73] Liu HS, Li LH*, Han XG, Huang JH, Sun JX, Wang HY. 2006. Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors. Applied Soil Ecology, 32: 284-292.

    [74] Liu P, Huang JH, Han XG, Sun OJ*, Zhou ZY. 2006. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 34: 266-275.

    [75] Wang ZP*, Han XG, Li LH. 2006. Methane emission patches in riparian marshes of the Inner Mongolia. Atmospheric Environment, 40: 5528-5532.

    [76] Wang CH, Wan SQ, Xing XR, Zhang L, Han XG*. 2006. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology & Biochemistry, 38: 1101-1110.

    [77] Yuan ZY, Li LH*, Han XG, Chen SP, Wang ZW, Chen QS, Bai WM. 2006. Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China. Oecologia, 148: 564-572.

    [78] Zhou ZY, Sun OJ*, Huang J, Gao YZ, Han XG. 2006. Land-use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Functional Ecology, 20: 753-762.

    [79] 孙双峰,黄建辉*,林光辉,韩兴国. 2006. 三峡库区岸边共存松栎树种水分利用策略比较. 植物生态学报, 30: 57-63.

    [80] 熊小刚,韩兴国*. 2006. 内蒙古退化草原中与小叶锦鸡儿相关的小尺度土壤碳、氮资源异质性动态. 生态学报, 26: 483-488.

    [81] 熊小刚,韩兴国*. 2006. 资源岛在草原灌丛化和灌丛化草原中的作用. 草业学报, 15: 9-14.

    [82] 熊小刚,韩兴国*. 2006. 运用状态与过渡模式讨论锡林河流域典型草原的灌丛化. 草业学报, 15: 9-13.

    [83] Chen SP*, Bai YF, Lin GH, Liang Y, Han XG. 2005. Effects of grazing on photosynthetic characteristics of major steppe species in the Xilin River Basin, Inner Mongolia, China. Photosynthetica, 43: 559-565.

    [84] Chen SP, Bai YF, Lin GH, Han XG*. 2005. Variations in life-form composition and foliar carbon isotope discrimination among eight plant communities under different soil moisture conditions in the Xilin River Basin, Inner Mongolia, China. Ecological Research, 20:167-176.

    [85] Chen SP, Bai YF, Zhang LX, Han XG*. 2005. Comparing physiological responses of two dominant grass species to N addition in Xillin River Basin of China. Experimental and Environmental Botany, 53: 65-75.

    [86] Gao YZ, Wang SP*, Han XG, Patton BD, Nyren PE. 2005. Competition between Artemisia frigida and Cleistogenes squarrosa under different clipping intensities in replacement series mixtures at different nitrogen levels. Grass and Forage Science, 60: 119-127.

    [87] He NP, Han XG*, Pan QM. 2005. Variations in the volatile organic compound emission potential of plant functional groups in the temperate grassland vegetation of Inner Mongolia, China. Journal of Integrative Plant Biology, 47: 13-19.

    [88] Li HT*, Han XG, Wu JG. 2005. Lack of evidence for 3/4 scaling of metabolism in terrestrial plants. Journal of Integrative Plant Biology, 47(10): 1173-1183.

    [89] Wang ZP*, Han XG. 2005. Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes. Atmospheric Environment, 39: 6295-6305.

    [90] Wang ZP*, Han XG, Li LH, Chen QS, Duan Y, Cheng WX. 2005. Methane emission from small wetlands and implications for semi-arid region budget. Journal of Geophysical Research, 110(D13): D13304.

    [91] Wu JG*, Bai YF, Han XG, Li LH, Chen ZZ. 2005. Ecosystem stability in Inner Mongolia (reply). Nature, 435: E6-E7.

    [92] Yang JC*, Huang JH, Pan QM, Tang JW, Han XG. 2005. Soil phosphorus dynamics as influenced by land use changes in humid tropical, southwest China. Pedosphere, 15(1): 24-32.

    [93] Yuan ZY, Li LH, Huang JH, Han XG*, Wan SQ. 2005. Effect of nitrogen supply on the nitrogen use efficiency of an annual herb, Helianthus annuus L. Journal of Integrative Plant Biology, 47: 539-548.

    [94] Yuan ZY, Li LH*, Han XG*, Huang JH, Jiang GM, Wan SQ. 2005. Soil characteristics and nitrogen resorption in Stipa krylovii native to northern China. Plant and Soil, 273: 257-268.

    [95] Yuan Z, Li L*, Han X, Huang J, Jiang G, Wan S, Zhang W, Chen Q. 2005. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments, 63: 191-202.

    [96] Yuan ZY, Li LH*, Han XG*, Wan SQ, Zhang WH, Chen QS. 2005. Variation in nitrogen economy of two Stipa species in the semiarid region of northern China. Journal of Arid Environments, 61: 13-25.

    [97] Yuan ZY, Li LH*, Han XG*, Huang JH, Wan SQ. 2005. Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in northern China. Plant and soil, 278: 183-193.

    [98] 何念鹏, 韩兴国*, 潘庆民. 2005. 植物源VOCs及其对陆地生态系统碳循环的贡献. 生态学报, 25: 2041-2048.

    [99] 黄建辉, 林光辉, 韩兴国. 2005. 不同生境间红树科植物水分利用效率的比较研究. 植物生态学报, 29: 530-536.

    [100] 潘庆民*,白永飞,韩兴国,杨景成. 2005. 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报, 29: 311-317.

    [101] 孙双峰, 黄建辉*, 林光辉, 赵威, 韩兴国. 2005. 稳定同位素技术在植物水分利用研究中的应用. 生态学报, 25: 2362-2371.

    [102] 熊小刚, 韩兴国*, 鲍雅静. 2005. 试论我国内蒙古半干旱草原灌丛沙漠化的研究. 草业学报, 14: 3-7.

    [103] 熊小刚, 韩兴国*. 2005. 内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源的空间异质性分布. 生态学报, 25: 1678-1683.

    [104] 熊小刚, 韩兴国*, 周才平. 2005. 平衡与非平衡生态学下的放牧系统管理. 草业学报, 14: 10-15.

    [105] 杨景成, 黄建辉, 唐建维, 潘庆民, 韩兴国*. 2005. 西双版纳农田弃耕后橡胶园的建立对碳的固存作用. 植物生态学报, 29: 296-303.

    [106] 张剑*, 李贵才, 刘先华, 韩兴国. 2005. 利用草场健康指数监测典型草原的植被退化. 生态学杂志, 24: 1392-1396.

    [107] 张剑, 李贵才, 刘先华, 韩兴国. 2005. 用群落调查及光谱观测数据的主成分分析方法研究草场各生物参数之间的关系. 遥感学报, 9 (6): 725-732.

    [108] Bai YF, Han XG, Wu JG*, Chen ZZ, Li LH. 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431: 181-184.

    [109] He NP, Han XG*, Sun W, Pan QM. 2004. Biogenic VOCs emission inventory development of temperate grassland vegetation in Xilin River Basin, Inner Mongolia, China. Journal of Environmental Sciences, 16: 1024-1032.

    [110] Li GC, Han XG*, Huang JH. 2004. N Mineralization and nitrification in a primary Lithocarpus xylocarpus forest and degraded vegetation in the Ailao Mountain, Yunnan Province. Acta Botanica Sinica, 46: 194-201.

    [111] Wang JZ, Lin GH*, Huang JH, Han XG. 2004. Applications of stable isotopes to study plant-animal relationships in terrestrial ecosystems. Chinese Science Bulletin, 49: 2339-2347.

    [112] Wang ZW*, Li LH, Han XG. 2004. Do rhizome severing and shoot defoliation affect clonal growth of Leymus chinensis at ramet population level? Acta Oecologia, 26: 255-260.

    [113] Wang ZP, Duan Y, Yang JR, Li LH, Han XG*. 2004. Plateau marsh methane oxidation as affected by inorganic N. Pedosphere, 14: 195-204.

    [114] Wu JG*, Huang JH, Han XG, Gao XM, He FL, Jiang MX, Jiang ZG, primack RB, Shen ZH. 2004. The Three Gorges Dam: an ecological perspective. Frontiers in Ecology and the Environment, 2: 241-248.

    [115] Yang JC, Huang JH, Pan QM, Tang JW, Han XG*. 2004. Long-term impacts of land-use change on dynamics of tropical soil carbon and nitrogen poois. Journal of Environmental Sciences, 16(2): 256-261.

    [116] Yuan ZY, Li LH, Han XG*. 2004. Effect of plant size on the nitrogen use strategy in an annual herb, Helianthus annuus (Sunflower). Acta Botanica Sinica, 46: 889-895.

    [117] Yuan ZY, Li LH, Han XG*. 2004. Effects of simulating grazing pattern and nitrogen supply on plant growth in a semiarid region of northern china. Acta Botanica Sinica, 46: 1032-1039.

    [118] Zhang LX, Bai YF, Han XG*. 2004. Differential responses of N: P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46: 259-270.

    [119] 鲍雅静, 李政海, 韩兴国*, 张颖, 仲延凯. 2004. 刈割对羊草叶面积指数的影响. 草地学报, 12: 313-317.

    [120] 陈全胜, 李凌浩, 韩兴国*, 阎志丹, 王艳芬, 张焱, 熊小刚, 陈世苹, 张丽霞, 高英志, 唐芳, 杨晶, 董云社. 2004. 典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系. 生态学报, 24: 831-836.

    [121] 陈全胜, 李凌浩, 韩兴国*, 董云社,王智平,熊小刚,阎志丹. 2004. 土壤呼吸对温度的响应. 生态学报, 24: 2649-2655.

    [122] 陈世苹, 白永飞, 韩兴国*, 安吉林, 郭富存. 2004. 沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化. 植物生态学报, 28: 515-522.

    [123] 高英志, 韩兴国*, 汪诗平. 2004. 放牧对草原土壤的影响. 生态学报, 24: 790-797.

    [124] 高英志, 汪诗平*, 韩兴国, 陈全胜, 王艳芬, 周志勇, 张淑敏, 杨晶. 2004. 退化草地恢复过程中土壤氮素状况以及与植被地上绿色生物量形成关系的研究. 植物生态学报, 28: 285-293.

    [125] 潘庆民, 白永飞, 韩兴国, 杨景成. 2004. 内蒙古典型草原羊草群落氮素去向的示踪研究. 植物生态学报, 28: 665-671.

    [126] 潘庆民, 白永飞, 韩兴国, 张丽霞. 2004. 羊草根茎的贮藏碳水化合物及对氮素添加的响应. 植物生态学报, 28: 53-58.

    [127] 王常慧, 邢雪荣*, 韩兴国. 2004. 草地生态系统中土壤氮素矿化影响因素的研究进展. 应用生态学报, 15: 2184-2188.

    [128] 王常慧, 邢雪荣*, 韩兴国*. 2004. 温度和湿度对我国内蒙古羊草草原土壤净碳矿化的影响. 生态学报, 24: 2472-2476.

    [129] 王建柱, 林光辉*, 黄建辉, 韩兴国. 2004. 稳定同位素在陆地生态系统动-植物相互关系研究中的应用. 科学通报, 49: 2141-2149.

    [130] 熊小刚, 韩兴国*, 陈全胜, 米湘成. 2004. 平衡与非平衡生态学在锡林河流域典型草原放牧系统中的应用. 生态学报, 24: 2165-2170.

    [131] 杨景成, 黄建辉, 潘庆民, 韩兴国*. 2004. 西双版纳不同热带生态系统土壤有机质的光谱学特性. 植物生态学报, 28: 623-629.

    [132] 袁志友, 李凌浩, 韩兴国*. 2004. 藜个体在高密度种群中的氮素利用效率. 植物生态学报, 28: 294-299.

    [133] Chen SP, Bai YF, Han XG*. 2003. Variations in composition and water use efficiency of plant functional groups based on their water ecological groups in the Xilin River Basin. Acta Botanica Sinica, 45: 1251-1260.

    [134] Wu JG*, Huang JH, Han XG, Xie ZQ, Gao XM. 2003. Three-Gorges Dam: Experiment in habitat fragmentation. Science, 300: 1239-1240.

    [135] Wu JG*, Huang JH, Han XG. 2003. Three-Gorges Dam: risk to ancient fish. Science, 32: 1149-1150.

    [136] Zhang LX, Bai YF, Han XG*. 2003. Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica, 45: 1009-1018.

    [137] 陈全胜, 李凌浩, 韩兴国*, 阎志丹. 2003. 水分对土壤呼吸的影响及机理. 生态学报, 23: 972-978.

    [138] 陈全胜, 李凌浩, 韩兴国, 阎志丹, 董云社. 2003. 土壤呼吸对全球温暖化的响应. 地学前缘, 10(4).

    [139] 陈全胜, 李凌浩, 韩兴国*, 阎志丹, 王艳芬, 袁志友. 2003.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响. 植物生态学报, 27: 202-209.

    [140] 陈全胜, 李凌浩, 韩兴国*, 阎志丹, 王艳芬, 张焱, 袁志友, 唐芳. 2003. 温带草原11个植物群落夏秋土壤呼吸对气温变化的响应. 植物生态学报, 27: 441-447.

    [141] 韩兴国, 王智平. 2003. 土壤生物多样性与微量气体(CO2, CH4, N2O)代谢. 生物多样性, 11: 322-332.

    [142] 黄建辉, 韩兴国, 杨亲二, 白永飞. 2003. 外来种入侵的生物学与生态学基础的若干问题. 生物多样性, 11: 240-247.

    [143] 李贵才, 韩兴国*, 黄建辉, 王长耀. 2003. 哀牢山中山湿性常绿阔叶林不同干扰强度下土壤无机氮的变化. 应用生态学报, 14 (8): 1251-1256.

    [144] 李贵才, 何永涛, 韩兴国. 2003. 哀牢山中山湿性常绿阔叶林林窗特征研究. 生态学杂志, 22 (3): 13-17.

    [145] 王智平, 段毅, 杨居荣, 陈全胜, 韩兴国. 2003. 青藏高原若尔盖沼泽潜在CH4氧化与生成的分布特征. 植物生态学报, 27: 786-791.

    [146] 熊小刚, 韩兴国, 白永飞, 潘庆民. 2003. 锡林河流域草原小叶锦鸡儿分布增加的趋势, 原因和结局. 草业学报, 12: 57-62.

    [147] 熊小刚, 韩兴国*, 陈全胜, 潘庆民. 2003. 木本植物多度在草原和稀树干草原中增加的研究进展. 生态学报, 23: 2436-2443.

    [148] 熊小刚, 韩兴国*, 陈全胜. 2003. 干旱和半干旱生态系统中的沃岛效应. 植物科学进展, 5: 179-183.

    [149] 熊小刚, 韩兴国. 2003. 生态学中的新领域-沃岛效应与草原的灌丛化. 植物杂志, 3: 45-46.

    [150] 杨景成, 韩兴国*, 黄建辉, 潘庆民. 2003. 土地利用变化对陆地生态系统碳贮量的影响. 应用生态学报, 14: 1385-1390.

    [151] 杨景成, 韩兴国*, 黄建辉, 潘庆民. 2003. 土壤有机质对农田管理措施的动态响应. 生态学报, 23: 787-796.

    [152] Chen SP, Bai YF, Han XG*. 2002. Variation of water-use efficiency of Leymus chinensis and Cleistogenes squarrosa in different plant communities in Xilin River Basin, Nei Mongol. Acta Botanica Sinica, 44: 1484-1490.

    [153] Huang H, Han X, Kang L*, Raven P, Jackson PW, Chen Y. 2002. Conserving native plants in China. Science, 297: 935-936.

    [154] Li LH, Han XG, Wang QB, Chen QS, Zhang Y, Yang J, Yan ZD, Li X, Bai WM, Song SH. 2002. Soil carbon balance in a native temperate grassland in the Xilin River Basin of Inner Mongolia. Acta Botanica Sinica, 44: 740-742.

    [155] Li LH, Han XG, Wang QB, Bai WM, Bai YF, Yan ZD, Chen QS, Zhang Y, Yang J, Li X, Song SH. 2002. Correlations between plant biomass and soil respiration in a Leymus chinensis community in the Xilin River Basin of Inner Mongolia. Acta Botanica Sinica, 44: 593-597.

    [156] Su B, Han XG, Qu CM, Huang JH. 2002. Effects of species composition and species diversity on soil properties in warm temperate forest ecosystems of Dongling mountainous region, Beijing. Ekologia-Bratislava, 21(2): 119-128.

    [157] 陈世苹, 白永飞, 韩兴国*. 2002. 稳定性碳同位素技术在生态学中的应用. 植物生态学报, 26(5): 549-560.

    [158] 李凌浩, 韩兴国, 王其兵, 陈全胜, 张焱, 杨晶, 白文明, 宋世环, 邢雪荣, 张淑敏. 2002. 锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计. 植物生态学报, 26(1): 29-32.

    [159] 李宪利, 袁志友, 李凌浩, 韩兴国.2002. 葡萄的成花过程及其影响因素. 果树学报, 19(5): 330-335.

    [160] 潘庆民, 韩兴国, 白永飞, 杨景成. 2002. 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 19(1): 30-38.

    [161] 苏波, 韩兴国, 渠春梅, 李贵才. 2002. 森林土壤氮素可利用性的影响因素研究综述. 生态学杂志, 21(2): 40-46.

    [162] 严昌荣, 韩兴国, 陈灵芝, 沈做奎. 2002. 中国暖温带落叶阔叶林中某些树种的13C自然丰度: δ13C值及其生态学意义. 生态学报, 22(12): 2163-2166.

    [163] 张化永, 邬建国, 韩兴国. 2002. 植被的组织有序度及其全球格局. 植物生态学报, 26(2): 129-139.

    [164] 韩兴国, 崔金钟. 2001. 植物科学的回顾与展望. 中国科学院院刊, (5): 329-333.

    [165] 黄建辉, 白永飞, 韩兴国. 2001. 物种多样性与生态系统功能:影响机制及有关假说. 生物多样性, 9(1): 1-7.

    [166] 黄建辉, 韩兴国. 2001. 关键种, 关键在哪里? 植物生态学报, 25(4): 505-509.

    [167] 李贵才, 韩兴国*, 黄建辉. 2001. 哀牢山木果柯林及其退化植被下土壤无机氮库的干季动态特征. 植物生态学报, 25(2): 210-217.

    [168] 李贵才, 韩兴国, 黄建辉. 2001. 森林生态系统土壤氮矿化影响因素研究进展. 生态学报, 21(7): 1187-1195.

    [169] 渠春梅, 韩兴国*, 苏波, 黄建辉, 蒋高明. 2001. 西双版纳片断化热带雨林常绿乔木幼树水分利用效率的边缘效应研究. 植物生态学报, 25(1): 1-5.

    [170] 渠春梅, 韩兴国*, 苏波, 黄建辉, 蒋高明. 2001. 云南西双版纳片段化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示. 植物学报, 43(2): 186-192.

    [171] 苏波, 韩兴国*, 渠春梅, 黄建辉. 2001. 东灵山油松纯林和油松-辽东栎针阔混交林土壤氮素矿化消化作用研究. 植物生态学报, 25(2): 195-203.

    [172] 严昌荣, 韩兴国, 陈灵芝. 2001. 六种木本植物水分利用效率和其小生境关系研究. 生态学报, 21(11): 1952-1956.

    [173] Su B, Han XG, Qu CM, Huang JH. 2000. Peashrub community may accelerate the successional process in a meadowland-peashrub-birch sere. Acta Botanica Sinica, 42 (7): 751-757.

    [174] 韩兴国*, 严昌荣, 陈灵芝, 梅旭荣. 2000. 暖温带地区几种木本植物碳稳定同位素的特点. 应用生态学报, 11(4): 497-500.

    [175] 黄建辉, 陈灵芝, 韩兴国. 2000. 几种常微量元素在辽东栎枝条分解过程中的变化特征. 生态学报,  20(2): 229-234.

    [176] 黄建辉, 李海涛, 韩兴国, 陈灵芝. 2000. 暖温带两种针叶林生态系统中茎流和穿透雨的养分特征研究. 植物生态学报, 24(2): 248-251.

    [177] 渠春梅, 韩兴国, 苏波. 2000. 片段化森林的边缘效应与自然保护区的设计管理. 生态学报, 20(1): 160-167.

    [178] 苏波, 韩兴国, 黄建辉, 渠春梅. 2000. 植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略. 生态学报, 20(2): 353-343.

    [179] 苏波, 韩兴国, 李凌浩, 黄建辉, 白永飞, 渠春梅. 2000. 中国东北样带草原区植物δ13C 值及水分利用效率对环境梯度的响应. 植物生态学报, 24(6): 648-655.

    [180] 邢雪荣*, 韩兴国, 陈灵芝. 2000. 植物养分利用效率研究综述. 应用生态学报, 11(5): 785-790.

    [181] 严昌荣, 韩兴国, 陈灵芝. 2000. 北京山区落叶阔叶林优势种叶片特点及其生理生态特性. 生态学报, 20(1): 53-60.

    [182] 黄建辉, 韩兴国, 陈灵芝. 1999. 森林生态系统根系生物量研究进展. 生态学报, 19(2): 270-277.

    [183] 苏波, 韩兴国, 黄建辉. 1999. 15N自然丰度法在生态系统氮素循环研究中的应用. 生态学报, 19(3): 408-416.

    [184] 严昌荣, A lec Downey, 韩兴国, 陈灵芝. 1999. 北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究.生态学报, 19(6):793-797.

    [185] 严昌荣, 陈灵芝, 黄建辉, 韩兴国. 1999. 中国东部主要松林营养元素循环的比较研究. 植物生态学报, 23(4): 351-360.

    [186] Huang JH*, XG Han, Chen LZ. 1998. Studies on litter decomposition processes in a temperate forest ecosystem. I. Change of organic matter in oak (Quercus liaotungensis Koidz.) twigs. Ecological Research, 13(2): 163-170.

    [187] 黄建辉. 陈灵芝, 韩兴国. 1998. 暖温带落叶阔叶林辽东烁枝条分解过程中有机物质的变化. 植物学报, 40(4): 362-369.

    [188] 黄建辉, 陈灵芝, 韩兴国. 1998. 辽东烁枝条分解过程中几种主要营养元素的变化. 植物生态学报, 22(5): 398-402.

    [189] 蒋高明, 黄银晓, 韩兴国. 1998. 城市与山地森林地区夏秋季大气CO2浓度变化初探. 环境科学学报, 18 (1): 108-111.

    [190] 严昌荣*韩兴国,陈灵芝,黄建辉,苏波. 1998. 暖温带落叶阔叶林主要植物叶片中δ13C种间差异及时空变化. 植物学报, 40(9): 853-859.

    [191] Ehrenfeld JG*, Han XG, Parsons WFJ, Zhu WX. 1997. On the nature of environmental gradients: temporal and spatial variability of soils and vegetation in the New Jersey Pinelands. Journal of Ecology, 85(6): 785-798.

    [192] Ehrenfeld JG, Parsons WFJ, Han XG, Parmelee RW, Zhu WX. 1997. Live and dead roots in forest soil horizons: Contrasting effects on nitrogen dynamics. Ecology, 78(2): 348-362.

    [193] 蒋高明, 韩兴国, 林光辉. 1997. 大气CO2浓度升高对植物的直接影响--国外十余年来模拟实验研究之主要手段及基本结论. 植物生态学报, 21(6): 489-502.

    [194] 蒋高明, 韩兴国, 周广胜. 1997. 北京山区典型暖温带落叶阔叶林大气CO2浓度、草本层光合作用及土壤释放CO2变化特点 (英文). 植物学报, 39(7): 653-660.

    [195] 李海涛, 韩兴国, 陈灵芝. 1997. 华北暖温带山地落叶阔叶混交林的茎流研究. 生态学报, 17(4): 371-376.

    [196] Zhu WX*, Ehrenfeld JG, Parmelee PW, Parsons WFJ, Han XG. 1996. The effects of live and dead roots on soil fungi in spodolic soils of the New Jersey Pinelands. Biology and Fertility of Soils, 21: 215-226.

    [197] Han XG, Wolf DC. 1996. Phosphorous availability in two soils amended with poultry litter. Journal of Environmental Sciences, 84(4): 484-491.

    [198] 韩兴国. 1996. 柠檬酸、葡萄糖和有机质对植物磷素吸收和土壤磷素形态的影响. 植物生态学报, 20(2): 97-112.

    [199] Han XG. 1995. Effects of organic matter on plant growth and phosphotase activity in a highly weathered Ultisol. Chinese Journal of Botany, 7(1): 65-74.

    [200] Han XG, Jordan CF. 1995. Mobilization of phosphorous by naturally occurring organic acids in Oxisols and Ultisols. Pedosphere, 5(4): 289-303.

    [201] Ehrenfeld JG, Han XG, Zhu W, Parmelee RW. 1995. Effects of dead pine root inputs on soil fauna and the decomposition of dead roots in a spodosol soil from the New Jersey pinelands. Acta Zoologica Fennica, 196: 27-32.

    [202] 韩兴国, 黄建辉, 娄志平. 1995. 关键种概念在生物多样性保护中的意义与存在的问题. 植物学通报, 12: 168-184.

    [203] 黄建辉, 韩兴国. 1995. 森林生态系统的生物地球化学循环: 理论与方法. 植物学通报, 12: 195-223.

    [204] 黄建辉, 韩兴国. 1995. 生物多样性和生态系统稳定性. 生物多样性, 3: 31-37.

    [205] Potter RL, Jordan CF*, Guedes RM, Batmanian GJ, Han XG. 1991. Assessment of a phosphorus fraction method for soils: Problems for further investigation. Agriculture, Ecosystems and Environment, 34(1-4): 453-463.

    [206] Lee D, Han XG, Jordan CF8. 1990. Soil phosphorus fractions, aluminum, and water retention as affected by microbial activity in an Ultisol. Plant and Soil, 121: 125-136.

    著作专著:

    [1]  Li Linghao, Chen Jiquan, Han Xingguo, Zhang Wenhao, Shao Changliang. 2020. Grassland ecosystems of China. Springer: Singapore.

    [2]  韩兴国. 2019. 生态系统过程与变化丛书: 草地与荒漠生态系统过程与变化. 北京: 高等教育出版社

    [3]  韩兴国, 李凌浩 (主编). 2012. 内蒙古草地生态系统维持机理. 北京: 中国农业大学出版社

    [4]  韩兴国 (主编). 2011. 草地与荒漠生态系统卷: 内蒙古锡林郭勒站 (2005-2008). 北京: 中国农业出版社

    [5]  邬建国, 葛剑平, 韩兴国, 余振良, 张大勇. 2007. 现代生态学讲座(III: 学科进展与热点论题. 北京: 高等教育出版社

    [6]  邬建国, 韩兴国, 黄建辉 (主编). 2002. 现代生态学讲座 (Ⅱ):基础研究与环境问题. 北京: 中国科学技术出版社

    [7]  韩兴国, 李凌浩, 黄建辉 (主编). 1999. 生物地球化学概论. 北京: 高等教育出版社. 施普林格出版社. 325

    [8]  蒋志刚, 马克平, 韩兴国(主编). 1997. 保护生物学. 浙江科学技术出版社. 263

    [9]  韩兴国. 1995. 生态演替理论与生态系统的恢复和重建. 1-15. 见;陈伟烈, 韩兴国, 贺金生(编著). 1995. 中国退化生态系统研究. 北京: 中国科学技术出版社. 246

    [10]  陈灵芝, 陈伟烈, 韩兴国, 贺金生(编著). 1995. 中国退化生态系统研究. 北京: 中国科学技术出版社. 246

    [11]  韩兴国. 1994. 岛屿生物地理学理论与生物多样性保护. 83-103. 钱迎情, 马克平(主编). 生物多样性研究的原理与方法. 北京: 中国科学技术出版社

    [12]  韩兴国, 程维信. 1992. 养分的生物地球化学循环. 73-100. : 刘建国等主编: 当代生态学博论. 北京: 中国科学技术出版社

  • 孙鸿烈, 陈宜瑜, 沈善敏, 赵士洞, 赵剑平, 韩兴国, 张佳宝, 于贵瑞, 刘国彬, 秦伯强, 赵新全, 马克平, 欧阳竹, 杨林章, 李彦. 2012. 中国生态系统研究网络的创建及其观测研究和试验示范. 国家科学技术进步一等奖.
学习经历
1978.09-1982.07 山东农业大学,学士
1985.10-1989.09 美国乔治亚大学,博士
工作经历
1982.07-1985.10 山东农业大学,讲师
1989.09-1990.09 美国阿肯色大学,助理教授
1990.09-1992.09 美国罗格斯大学海岸与海洋研究中心,博士后
1992.09-1995.10 中国科学院植物研究所,副研究员
1995.10-1997.02 中国科学院植物研究所,研究员
任职情况
1997.02-1998.04 中国科学院西双版纳热带植物园,副主任
1998.04-2006.04 中国科学院植物研究所,所长兼植物园主任
1998.04-2012.05 内蒙古草原生态系统定位研究站,站长
2000.04-2004.09 中国生态学会,副理事长
2003.10-2008.07 中国植物学会,理事长
2004.03-2010.03 国际生物多样性计划中国委员会,科学委员会委员
2008.07-2015.06 中国科学院沈阳应用生态研究所,所长
科研项目

承担项目

国家自然科学基金重点项目“氮沉降诱导的草原生态系统地上与地下过程解耦联机理” 主持人

国家自然科学基金面上项目“利用古土壤序列研究土壤有机碳稳定性、氮可利用性对气候变化的响应” 主持人

第二次青藏高原综合考察研究子子专题“羌塘高原草畜平衡时空格局及资源空间优化配置” 主持人

中国科学院战略性先导科技专项(A类)课题“国家自然保护区生境修复与生态系统重构” 主持人

国家自然科学基金面上项目“氮化合物形态对内蒙古典型草原生态系统凋落物分解影响的化学计量” 主持人

中国科学院科技服务网络计划课题“北方风沙区生态综合治理技术集成和应用” 主持人

国家重点研发计划项目“北方农牧交错带草地退化机理及生态修复技术集成示范” 主持人

国家自然科学基金重点项目“氮沉降对典型草原生态系统生物多样性与功能过程的影响机制” 主持人

国家自然科学基金国际(地区)合作与交流项目“草原生态系统对极端气候事件的响应:中美联网研究” 主持人

国家自然科学基金面上项目“氮沉降和刈割对内蒙古典型草原生态系统功能的影响” 主持人

国家自然科学基金重点项目“内蒙古典型草原生物多样性与生态系统功能关系的控制实验研究” 主持人

国家自然科学基金创新研究群体项目“北方草地全球变化生态学研究” 主持人

国家重点基础研究发展计划(973)“北方草地与农牧交错带生态系统维持与适应性管理的科学基础” 主持人

国家自然科学基金创新研究群体项目“北方草地全球变化生态学研究” 主持人

中国科学院战略性先导科技专项(B类)“土壤微生物组成与分布格局” 主持人

国家自然科学基金面上项目克氏针茅草原碳素释放与氮素添加的耦合机制研究主持人

国家自然科学基金重点项目草原生态系统中生源要素的计量化学关系及其耦合机理主持人

中国科学院知识创新工程重大项目浑善达克沙地与京北农牧交错区生态环境综合治理实验示范研究主持人

中国科学院西部行动计划(二期)锡林郭勒草地适应性管理与可持续发展试验示范研究 主持人

国家重点基础研究发展规划项目2级课题农牧交错带生态系统生产力形成机制主持人

科技部首都圈防沙治沙应急技术研究与示范项目锡林郭勒草原(锡林浩特)地区防沙治沙技术示范项目负责人

国家自然科学基金杰出青年基金B类项目锡林郭勒草原景观格局与生态系统功能的综合研究国内合作者

国家自然科学基金面上项目热带中国陆地生态系统C贮量及其历史变化格局主持人

人类干扰和土著知识对澜沧江流域生物多样性的影响 项目秘书, 二级课题主持人

国家环保总局中国自然保护区生态旅游战略及其对策的研究主持人

国家自然科学基金面上项目片断化热带雨林植物水分利用效率的边缘效应主持人

论文专著

论文专著:

2024

[1]   Jiang LC#, Cheng HH#, Peng Y#, Sun TR, Gao YZ, Wang RZ, Ma YX, Yang JJ, Yu Q, Zhang HY, Han XG*, Ning QS*. 2024. Relative role of soil nutrients vs. carbon availability on soil carbon mineralization in grassland receiving long-term N addition. Soil & Tillage Research, 235: 105864.

[2]   Zhao RN, Kuzyakov Y, Zhang HY, Wang ZR, Li TP, Shao LY, Jiang LC, Wang RZ, Li MH, Sun OJX, Jiang Y, Han XG*. 2024. Labile carbon inputs offset nitrogen-induced soil aggregate destabilization via enhanced growth of saprophytic fungi in a meadow steppe. Geoderma. 443:116841

[3]   Yang W#, Zhang SH#, li A#, Yang JJ#,, Pang S#,, Hu ZH, Wang ZP, Han XG*, Zhang XM*. 2024. Nitrogen deposition mediates more stochastic processes in structuring plant community than soil microbial community in the Eurasian steppe. SCIENCE CHINA Life Sciences, 38212459.

[4]   Zhao M, Loreau M, Ochoa-Hueso R, Zhang HX*, Yang JJ, Zhang YH, Liu HY, Jiang Y, Han XG*. 2024. Decoupled responses of above- and below-ground beta-diversity to nitrogen enrichment in a typical steppe. Ecology Letters, 27:e14339.

 

2023

[1] You CH, Wang YB, Tan XR, Cui EQ, Zhang BW, Bian CY, Chen BY, Xu MZ, Han XG, Xia JY, Chen SP*. 2023. Inner Mongolia grasslands act as a weak regional carbon sink: A new estimation based on upscaling eddy covariance observations. Agricultural and Forest Meteorology, 342: 109719.

[2] Wang YB, You CH, Gao YH, Li YQ, Niu YY, Shao CL, Wang X, Xin XP, Yu GR, Han XG, Chen SP*. 2023. Seasonal variations and drivers of energy fluxes and partitioning along an aridity gradient in temperate grasslands of Northern China. Agricultural and Forest Meteorology, 342: 109736.

[3] Yang W#, Yang JJ#, Fan Y, Guo QK, Jiang NN, Babalola OO, Han XG, Zhang XM*. 2023. The two sides of resistance-resilience relationship in both aboveground and belowground communities in the Eurasian steppe. New Phytologist, 239: 350-363.

[4] Su J, Zhang HY, Han XG, Lü RF, Liu L, Jiang Y, Li H, Kuzyakov Y, Wei CZ*. 2023. 5300-Year-old soil carbon is less primed than young soil organic matter. Global Change Biology, 29: 260-275.

[5] Yang GJ, Stevens C, Zhang ZJ, Lü XT*, Han XG. 2023. Different nitrogen saturation thresholds for above-, below-, and total net primary productivity in a temperate steppe. Global Change Biology, 29: 4586-4594.

[6] Niu GX*, Wang RZ, Zhou H, Yang JJ*, Lu XK, Han XG, Huang JH*. 2023. Nitrogen addition and mowing had only weak interactive effects on macronutrients in plant-soil systems of a typical steppe in Inner Mongolia. Journal of Environmental Management, 347: 119121.

[7] Zhang HY#*, Lü XT#, Wei CZ#, Powell JR, Wang XB, Xing DL, Xu ZW, Li HL, Han XG. 2023.β-diversity in temperate grasslands is driven by stronger environmental filtering of plant species with large genomes. Ecology, 104(3): e3941.

[8] Shao LY, Peng Y, Liu HY, Zhao RN, Jiang LC, Li Y, Han P, Jiang Y, Wei CZ, Han XG, Huang JH*. 2023. Applied phosphorus is maintained in labile and moderately occluded fractions in a typical meadow steppe with the addition of multiple nutrients. Journal of Environmental Management, 345: 118807.

[9] Sun JM, Zhang B, Pan QM*, Liu W, Wang XL, Huang JH, Chen DM, Wang CH, Han XG. 2023. Non- linear response of productivity to precipitation extremes in the Inner Mongolia grassland. Functional Ecology, 37: 1663-1673.

[10] Zheng P#*, Zhao RN#, Jiang LC, Yang GJ, Wang YL, Wang RZ, Han XG, Ning QS*. 2023. Increasing nitrogen addition rates suppressed long-term litter decomposition in a temperate meadow steppe. Journal of Plant Ecology, 16(3): rtac078.

[11] Lü J, Wang RZ*, Sardans J, Peñuelas J, Jiang Y, Han XG. 2023. An integrative review of drivers and responses of grassland phenology under global change. Critical Reviews in Plant Sciences, 42(3): 124-137.

[12] Luo WT*, Ma W, Song L, Te NW, Chen JQ, Muraina TO, Wilkins K, Griffin-Nolan RJ, Ma TX, Qian JQ, Xu C, Yu Q, Wang ZW, Han XG, Collins SL. 2023. Compensatory dynamics drive grassland recovery from drought. Journal of Ecology, 111:1281-1291.

[13] Luo WT*, Shi Y, Wilkins K, Song L, Te NW, Chen JQ, Zhang HX, Yu Q, Wang ZW, Han XG, Collins SL. 2023. Plant traits modulate grassland stability during drought and post‐drought periods. Functional Ecology, 37: 2611-2620.

[14] Luo WT*, Griffin-Nolan RJ, Song L, Te NW, Chen JQ, Shi Y, Muraina TO, Wang ZW, Smith MD, Yu Q, Knapp AK, Han XG, Collins SL. 2023. Interspecific and intraspecific trait variability differentially affect community‐weighted trait responses to and recovery from long‐term drought. Functional Ecology, 37: 504-512.

[15] Luo WT, Muraina TO, Griffin-Nolan RJ, Te NW, Qian JQ*, Yu Q, Zuo XA, Wang ZW, Knapp AK, Smith MD, Han XG, Colliins SL. 2023. High below‐ground bud abundance increases ecosystem recovery from drought across arid and semiarid grasslands. Journal of Ecology, 111: 2038-2048.

[16] Qian JQ#, Zhang ZM#, Dong YW, Ma Q, Yu Q, Zhu JL, Zuo XA, Broderick CM, Collins SL, Han XG, Luo WT*. 2023. Responses of bud banks and shoot density to experimental drought along an aridity gradient in temperate grasslands. Functional Ecology, DOI: 10.1111/1365-2435.14301.

[17] Cai JP, Weiner J, Luo WT, Feng X, Yang GJ, Lu JY, Lü XT, Li MH, Jiang Y*, Han XG*. 2023. Functional structure mediates the responses of productivity to addition of three nitrogen compounds in a meadow steppe. Oecologia, 201(2): 575-584.

[18] Luo WT*, Muraina TO, Griffin-Nolan RJ, Ma W, Song L, Fu W, Yu Q, Knapp AK, Wang ZW, Han XG, Collins SL. 2023. Responses of a semiarid grassland to recurrent drought are linked to community functional composition. Ecology, 104(2): e3920.

[19] He NP#*, Yan P#, Liu CC, Xu L, Li MX, Van Meerbeek K, Zhou GS, Zhou GY, Liu SR, Zhou XH, Li SG, Niu SL, Han XG, Buckley TN, Sack L*, Yu GR*. 2023. Predicting ecosystem productivity based on plant community traits. Trends in Plant Science, 28(1): 43-53.

[20] Wang YL, Niu GX, Wang RZ, Rousk K, Li A, Hasi M, Wang CH, Xue JG, Yang GJ, Lu XT, Jiang Y, Han XG*, Huang JH*. 2023. Enhanced foliar 15N enrichment with increasing nitrogen addition rates: Role of plant species and nitrogen compounds. Global Change Biology, 29(6): 1591-1605.

[21] Hou SL, Dijkstra FA, Lü XT*, Han XG. 2023. Increases in the dominance of species with higher N:P flexibility exacerbate community N–P imbalances following N inputs. Biogeochemistry, 163: 279-288.

[22] He P, Ling N*, Lü XT, Zhang HY, Wang C, Wang RZ, Wei CZ, Yao J, Wang XB*, Han XG, Nan ZB. 2023. Contributions of abundant and rare bacteria to soil multifunctionality depend on aridity and elevation. Applied Soil Ecology, 188: 104881.

[23] Cao JR#, Pang S#, Wang QB*, Willianms MA, Jia X, Dun SS, Wang J, Yang JJ, Zhang YH, Ruan WB, Hu YC, Li LH, Li YC, Han XG. 2023. The sensitivity of belowground ecosystem to long-term Increased nitrogen deposition in a temperate grassland: Root productivity, microbial biomass, and biodiversity. Journal of Geophysical Research-Biogeosciences, 128(6): e2022JG007000.

 

2022

[1] Sun JM#, Liu W#, Pan QM, Zhang B, Lü YX, Huang JH, Han XG*. 2022. Positive legacies of severe droughts in the Inner Mongolia grassland. Science Advances, 8: eadd6249.

[2] Peng Y#, Yang JX#, Leitch I J, Guignard MS, Seabloom EW, Cao D, Zhao FY, Li HL, Han XG, Jiang Y, Leith AR*, Wei CZ*. 2022. Plant genome size modulates grassland community responses to multi-nutrient additions. New Phytologist, 236: 2091-2102.

[3] Zhao M, Zhang HX, Baskin CC, Wei CZ, Yang JJ, Zhang YH, Jiang Y, Jiang L, Han XG*. 2022. Intra‐annual species gain overrides species loss in determining species richness in a typical steppe ecosystem after a decade of nitrogen enrichment. Journal of Ecology, 110 (8): 1942-1956.

[4] Su J, Zhang HY, Han XG, Penuelas J, Filimonenko E, Jiang Y, Kuzyakov Y, Wei CZ*. 2022. Low carbon availability in paleosols nonlinearly attenuates temperature sensitivity of soil organic matter decomposition. Global Change Biology, 28: 4180-4193.

[5] Yang JJ#, Xu MJ#, Pang S#, Gao LL, Zhang ZJ, Wang ZP, Zhang YH, Han XG*, Zhang XM*. 2022. Disturbance-level-dependent post-disturbance succession in a Eurasian steppe. Science China-Life Sciences, 65(1): 142-150.

[6] Wang RZ#, Yang JJ#, Liu HY#, Sardans J, Zhang YH, Wang XB, Wei CZ, Lü XT, Dijkstra FA, Jiang Y, Han XG*, Peñuelas J. 2022. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology, 103: e3616.

[7] Pan QM, Symstad AJ, Bai YF, Huang JH, Wu JG, Naeem S, Chen DM, Tian DS, Wang QB, Han XG*. 2022. Biodiversity-productivity relationships in a natural grassland community vary under diversity loss scenarios. Journal of Ecology,110: 210-220.

[8] Chen JY#, Dong G#, Chen JQ, Jiang SC, Qu LP, Legesse TG, Zhao FY, Tong Q, Shao CL*, Han XG*. 2022. Energy balance and partitioning over grasslands on the Mongolian Plateau. Ecological Indicators, 135: 108560.

[9] Ning QS, Jiang LC*, Wang RZ, Wang J, Han XG*, Yang JJ*. 2022. Greater soil microbial biomass loss at low frequency of N addition in an Inner Mongolia grassland. Journal of Plant Ecology, 15(4): 721-732.

[10] Ning QS#, Jiang LC#, Niu GX, Yu Q, Liu JS, Wang RZ, Liao S, Huang JH, Han XG*, Yang JJ*. 2022. Mowing increased plant diversity but not soil microbial biomass under N-enriched environment in a temperate grassland. Plant and Soil, https://doi.org/10.1007/s11104-022-05332-5.

[11] Cui JF, Han SJ, Zhang XM*, Han XG, Wang ZP*. 2022. Temporal–Spatial Variability of Dissolved Carbon in the Tributary Streams of the Lower Yangtze River Basin. Water, 14(24): 4057.

[12] Fu W, Chen BD*, Rillig MC, Jansa J, Ma W, Xu C, Luo WT, Wu HH, Hao ZP, Wu H, Zhao AH, Yu Q, Han XG. 2022. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. New Phytologist, 234(6): 2003-2017.

[13] Fu W, Chen BD*, Jansa J, Wu HH, Ma W, Luo WT, Xu C, Hao ZP, Wu H, Yu Q, Han XG. 2022. Response of root and soil dwelling fungi to extreme drought in a temperate grassland. Soil Biology & Biochemistry, 169: 108670.

[14] Yang GJ, Hautier Y, Zhang ZJ, Lü XT*, Han XG. 2022. Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 28: 2711-2720.

[15] Xu MJ, Zhu XZ, Chen SP, Pang S, Liu W, Gao LL, Yang W, Li TT, Zhang YH, Luo C, He DD, Wang ZP, Fan Y, Han XG, Zhang XM *. 2022. Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. iScience, 25(3): 103893.

[16] Song L, LuoWT*, Griffin-Nolan RJ, Ma W, Cai JP, Zuo XA, Yu Q, Hartmann H, Li MH, Smith MD, Collins SL, Knapp AK, Wang ZW*, Han XG. 2022. Differential responses of grassland community nonstructural carbohydrate to experimental drought along a natural aridity gradient. Science of the Total Environment, 822: 153589.

[17] Gurmesa GA#, Wang A#, Li SL, Peng SS*, de Vries W, Gundersen P, Ciais P, Phillips, OL, Hobbie EA, Zhu WX, Nadelhoffer K, Xi Y, Bai E, Sun T, Chen DX, Zhou WJ, Zhang YP, Guo YR, Zhu JJ, Duan L, Li DJ, Koba K, Du EZ, Zhou GY, Han XG, Han SJ, YT Fang*. 2022. Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink. Nature Communications, 13(1): 880.

[18] Niu GX, Wang YL, Wang RZ, Ning QS*, Guan HL, Yang JJ, Lu XK, Han XG, Huang JH*. 2022. Intensity and duration of nitrogen addition jointly alter soil nutrient availability in a temperate grassland. Journal of Geophysical Research: Biogeosciences, 127: e2021JG006698.

[19] Luo WT, Zuo XA, Griffin-Nolan RJ, Xu C, Sardans J, Yu Q*, Wang ZW*, Han XG, Peñuelas J. 2022. Chronic and intense droughts differentially influence grassland carbon-nutrient dynamics along a natural aridity gradient. Plant and Soil, 473(1-2): 137-148.

[20] Liang XS, Ma W, Yu Q, Luo WT, Wang ZW, Lü XT*, Han XG. 2022. Conserved responses of nutrient resorption to extreme drought in a grassland: The role of community compositional changes. Functional Ecology, 36(10): 2616-2625.

[21] Ma W, Liang XS, Wang ZW*, Luo WT, Yu Q, Han XG. 2022. Resistance of steppe communities to extreme drought in northeast China. Plant and Soil, 473(1-2): 181-194.

[22] Wu H, Yang JJ, Fu W, Rillig MC, Cao ZJ, Zhao AH, Hao ZP, Zhang X, Chen BD*, Han XG. 2022. Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. New Phytologist, 237(1): 279-294.

[23] Niu GX, Liu L, Wang YL, Guan HL, Ning QS, Liu T, Rousk K, Zhong BQ, Yang JJ, Lu XK, Han XG, Huang JH*. 2022. Effects of decadal nitrogen addition on carbon and nitrogen stocks in different organic matter fractions of typical steppe soils. Ecological Indicators, 114: 109471.

2021

[1] Ning QS, Hättenschwiler S, Lü XT, Kardol P, Zhang YH, Wei CZ, Xu CY, Huang JH, Li A, Yang JJ, Wang J, Peng Y, Peñuelas J, Sardans J, He JZ, Xu ZH, Gao YZ*, Han XG*. 2021. Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Global Change Biology, 27(22): 5976-5988.

[2] Muqier H, Zhang XY, Niu GX, Wang YL, Geng QQ, Quan Q, Chen SP, Han XG*, Huang JH*. 2021. Soil moisture, temperature and nitrogen availability interactively regulate carbon exchange in a meadow steppe ecosystem. Agricultural and Forest Meteorology, 304: 108389.

[3] Ren TT, He NP*, Liu ZG, Li MX, Zhang JH, Li A, Wei CZ, Lü XT, Han XG*. 2021. Environmental filtering rather than phylogeny determines plant leaf size in three floristically distinctive plateaus. Ecological Indicators, 130: 108049.

[4] Sun QQ#, Yang JJ#, Wang S, Yang FY, Zhang GM, Wei CZ, Han XG*, Li JS *. 2021. Nitrogen enrichment affects the competition network of aboveground species on the Inner Mongolia steppe. Global Ecology and Conservation, 31: e01826.

[5] Xu MJ, Li TT, Liu W, Ding JJ, Gao LL, Han XG*, Zhang XM*. 2021. Sensitivity of soil nitrifying and denitrifying microorganisms to nitrogen deposition on the Qinghai–Tibetan plateau. Annals of Microbiology, 71(1): 6.

[6] Yang JX#, Peng Y#, Han XG*. 2021. Slow recovery of soil methane oxidation potential after cessation of N addition in a typical steppe. Pedobiologia-Journal of Soil Ecology, 85-86: 150709.

[7] Hou SL#, Hattenschwiler S#, Yang JJ#, Sistla S, Wei HW, Zhang ZW, Hu YY, Wang RZ, Cui SY, Lü XT*, Han XG. 2021. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytologist, 229(1): 296-307.

[8] Li A*, Gao L, Chen S, Zhao JL, Ujiyad S, Huang JH*, Han XG, Bryan BA. 2021. Financial inclusion may limit sustainable development under economic globalization and climate change. Environmental Research Letters, 16(5): 054049.

[9] Liu CC#, Muir CD#, Li Y, Xu L, Li MX, Zhang JH, de Boer HJ, Sack L, Han XG, Yu GR, NP He*. 2021. Scaling between stomatal size and density in forest plants. bioRxiv, https://doi.org/10.1101/2021.04.25.441252.

[10] Liu HY, Wang RZ*, Lü XT, Cai JP, Feng X, Yang GJ, Li H, Zhang YG, Han XG, Jiang Y. 2021. Effects of nitrogen addition on plant-soil micronutrients vary with nitrogen form and mowing management in a meadow steppe. Environmental Pollution, 289: 117969.

[11] Lü XT*, Hou SL, Reed S, Yin JX, Hu YY, Wei HW, Zhang ZW, Yang GJ, Liu ZY, Han XG. 2021. Nitrogen enrichment reduces nitrogen and phosphorus resorption through changes to species resorption and plant community composition. Ecosystems, 24(3): 602-612.

[12] Luo WT, Griffin-Nolan, RJ, Ma W, Liu B, Zuo XA, Xu C, Yu Q*, Luo YH, Mariotte P, Melinda MD, Collins SL, Knapp AK, Wang ZW, Han XG. 2021. Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology, 102(10): e03465.

[13] Luo WT, Wang XG, Auerswald K, Wangle ZW, Bird MI, Still CJ, Lü XT*, Han XG. 2021. Effects of plant intraspecific variation on the prediction of C3/C4 vegetation ratio from carbon isotope composition of topsoil organic matter across grasslands. Journal of Plant Ecology, 14(4):628-637.

[14] Niu GX#, Hasi M#, Wang RZ, Wang YL, Geng QQ, Hu SY, Xu XH, Yang JJ, Wang CH, Han XG, Huang JH*. 2021. Soil microbial community responses to long-term nitrogen addition at different soil depths in a typical steppe. Applied Soil Ecology, 167: 104054.

[15] Song YQ#, Yang JJ#, Liu W#, Li TT, Han XG, Zhang XM *. 2021. Different deterministic versus stochastic drivers for the composition and structure of a temperate grassland community. Global Ecology and Conservation, 31: e01866.

[16] Taofeek OM, Xu C, Yu Q*, Yang YD, Jing MH, Jia XT, Jaman MS, Dam Q, Knapp AK, Collins SL, Luo YQ, Zuo XA, Xin XP, Han XG, Smith MD. 2021. Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. Journal of Ecology, 109(4): 1665-1675.

[17] Wang S#, Bao XL#, Feng K#, Deng Y*, Zhou WJ, Shao PS, Zheng TT, Yao F, Yang S, Liu SG, Shi RJ, Bai Z, Xie HT, Yu JH, Zhang Y, Zhang YP, Sha LQ, Song QH, Liu YT, Zhou JZ, Zhang YG, Li H, Wang QK, Han XG, Zhu YG, Liang C*. 2021. Warming-driven migration of core microbiota indicates soil property changes at continental scale. Science Bulletin, 66(19): 2025-2035.

[18] Wang X*, Wang M, Tao YM, Fang NN, Yang GJ, Cai JP, Jiang Y, Han XG, Y FH, Li MH. 2021. Beneficial effects of nitrogen deposition on carbon and nitrogen accumulation in grasses over other species in Inner Mongolian grasslands. Global Ecology and Conservation, 26: e01507.

[19] Wang XG, Wuyunna*, Lu XT, Yang GJ, Coombs CEO, Du X, Song YT, Zhang FJ, Hou GW, Han XG. 2021. Soil C:N:P stoichiometry as related to nitrogen addition in a meadow steppe of Northern China. 2021. Eurasian Soil Science, 54: 1581-1587.

[20] Wang ZP*, Han SJ, Zheng YH, Zhang HY, Wu HH*, Cui JF, Xiao CW, Han XG. 2021. Fencing facility affects plant species and soil organic carbon in temperate steppes. Catena, 196: 104928.

[21] Wang ZP*, Li HL, Wu HH, Han SJ, Huang JH, Zhang XM*, Han XG. 2021. Methane concentration in the heartwood of living trees and estimated methane emission on stems in upland forests. Ecosystems, 24(6): 1485-1499.

[22] Xiong D#, Wei CZ#, Wang XG, Lü XT, Fang S, Li YB*, Wang XB, Liang WJ, Han XG, Bezemer TM, Li Q*. 2021. Spatial patterns and ecological drivers of soil nematode β‐diversity in natural grasslands vary among vegetation types and trophic position. Journal of Animal Ecology, 90(5): 1367-1378.

[23] Zhang JH#, Ren TT#, Yang JJ#, Xu, L, Li MX, Zhang YH, Han XG, He NP*. 2021. Leaf multi-element network reveals the change of species dominance under nitrogen deposition. Frontiers in Plant Science, 12: 580340.

[24] Zhang WH*, Zhang YH, Han XG. 2021. Major advances in plant ecology research in China (2020). Journal of Plant Ecology, 14(5): 995-1001.

2020

[1] He NP#*, Li Y#, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Sack L, Yu GR*. 2020. Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. Trends in Ecology & Evolution, 35(10): 908-918.

[2] Zhang BW*, Hautier Y, Tan XR, You CH, Cadotte MW, Chu CJ, Jiang L, Sui XH, Ren TT, Han XG, Chen SP*. 2020. Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Functional Ecology, 34(12): 2622-2633.

[3] Wang NN, Li L, Zhang BW, Chen SP, Sun W, Luo Y, Dong KH, Han XG, Huang JH*, Xu XF, Wang CH*. 2020. Population turnover promotes fungal stability in a semi-arid grassland under precipitation shifts. Journal of Plant Ecolgoy, 13(4): 499-509.

[4] Dong LL, Berg B, Sun T*, Wang ZW*, Han XG. 2020. Response of fine root decomposition to different forms of N deposition in a temperate grassland. Soil Biology & Biochemistry, 147: 107845.

[5] Wei HW, Wang XG, Li YB, Yang JJ, Wang JF, Lü XT*, Han XG. 2020. Simulated nitrogen deposition decreases soil microbial diversity in a semiarid grassland, with little mediation of this effect by mowing. Pedobiologia, 80: 150644.

[6] Wang XG, Lü XT*, Zhang HY, Dijkstra FA, Jiang YG, Wang XB, Lu JY, Wuyunna, Wang ZW, Han XG. 2020. Changes in soil C:N:P stoichiometry along an aridity gradient in drylands of northern China. Geoderma, 361: 114087.

[7] Li HL, Zhang XM, Deng FD, Han XG, Xiao CW*, Han SJ, Wang ZP*. 2020. Microbial methane production is affected by secondary metabolites in the heartwood of living trees in upland forests. Trees-Structure and Function, 34(1): 243-254.

[8] Ma T, Dai GH, Zhu SS, Chen DM, Chen LT, Lü XT, Wang XB, Zhu JT, Zhang YJ, He JS, Bai YF, Han XG, Feng XJ*. 2020. Vertical variations in plant- and microbial-derived carbon components in grassland soils. Plant and Soil, 446(1-2): 441-455.

[9] Cao JR#, Pang S#, Wang QB*, Williams MA; Jia X, Dun SS, Yang JJ, Zhang YH, Wang J, Lü XT, Hu YC, Li LH, Li YC, Han XG. 2020. Plant-bacteria-soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Functional Ecology, 34(3): 723-734.

[10] Xiong D#, Wei CZ#, Wubs ERJ, Veen GJ, Liang WJ, Wang XB, Li Qi*, Van der P, Wim H, Han XG. 2020. Nonlinear responses of soil nematode community composition to increasing aridity. Global Ecology and Biogeography, 29(1): 117-126.

[11] Pastorello G, Trotta C, Canfora E, Chu HS, Christianson D, Cheah YW, Poindexter C, Chen JQ, Elbashandy A, Humphrey M, Isaac P, Polidori D, Reichstein M, Ribeca A, van Ingen C, Vuichard N, Zhang LM, Amiro B, Ammann C, Arain MA, Ardo J, Arkebauer T, Arndt SK, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini LB, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black TA, Blanken PD, Bohrer G, Boike J, Bolstad PV., Bonal D, Bonnefond JM, Bowling DR, Bracho R, Brodeur J, Brummer C, Buchmann N, Burban B, Burns SP, Buysse P, Cale P, Cavagna M, Cellier P, Chen SP, Chini I, Christensen TR, Cleverly J, Collalti A, Consalvo C, Cook BD, Cook D, Coursolle C, Cremonese E, Curtis PS, D'Andrea E, da Rocha H, Dai XQ, Davis KJ, De CB, de Grandcourt A, De Ligne A, De Oliveira RC, Delpierre N, Desai AR, Di Bella CM, di Tommasi P, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrene E, Dunn A, Dusek J, Eamus D, Eichelmann U, ElKhidir Hatim AM, Eugster W, Ewenz CM, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein AH, Gough CM, Goulden ML, Graf A, Griebel A, Gruening C, Grunwald T, Hammerle, Han SJ, Han XG, Hansen BU, Hanson C, Hatakka J, He YT, Hehn M, Heinesch B, Hinko-Najera N, Hortnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janous D, Jans W, Jassal R, Jiang SC, Kato T, Khomik M, Klatt J, Knohl A, Knox S, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch WL, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li YN, Liddell M, Limousin JM, Lion M, Liska AJ, Lohila A, Lopez-Ballesteros A, Lopez-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Luers J, Ma SY, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis HA, Marras S, Massman W, Mastepanov M, Matamala R, Matthes JH, Mazzenga F, McCaughey H, McHugh I, McMillan AMS, Merbold L, Meyer W, Meyers T, Miller SD, Minerbi S, Moderow U, Monson RK, Montagnani L, Moore CE, Moors E, Moreaux V, Moureaux C, Munger JW, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel W, Olesen JE, Ourcival JM, Papuga SA, Parmentier FJ, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips RP, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober SM, Rambal S, Rannik U, Raz-Yaseef N, Rebmann C, Reed D, de Dios VR, Restrepo-Coupe N, Reverter BR, Roland M, Sabbatini S, Sachs T, Saleska SR, Sanchez-Canete EP, Sanchez-Mejia ZM, Schmid HP, Schmidt M, Schneider K, Schrader F, Schroder I, Scott RL, Sedlak P, Serrano-Ortiz P, Shao CL, Shi PL, Shironya I, Siebicke L, Sigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens RM, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang YH, Tapper N, Thom J, Tomassucci M, Tuovinen JP, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker JP, Walter-Shea E, Wang HM, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Li YL, Zampedri R, Zhang JH, Zhou GY, Zona D, Agarwal D, Biraud S, Torn M, Papale D. 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1): 225.

[12] 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹*. 2020. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响. 植物生态学报, 44(10): 1059-1072.

2019

[1] He NP*, Liu CC, Piao SL, Sack L, Xu L, Luo YQ, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR*. 2019. Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 34(3): 200-210.

[2] Li YB, Bezemer TM, Yang JJ, Lü XT, Li XY, Liang WJ*, Han XG, Li Q*. 2019. Changes in litter quality induced by N deposition alter soil microbial communities. Soil Biology & Biochemistry, 130: 33-42.

[3] Wang XB, Yao J, Zhang HY, Wang XG, Li KH, Lü XT, Wang ZW, Zhou JZ, Han XG*. 2019. Environmental and spatial variables determine the taxonomic but not functional structure patterns of microbial communities in alpine grasslands. Science of the Total Environment, 654: 960-968.

[4] Yang GJ, Lü XT*, Stevens CJ, Zhang GM, Wang HY, Wang ZW, Zhang ZJ, Liu ZY, Han XG. 2019. Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia, 189(3): 769-779.

[5] Zhang YH#, Feng JC#, Loreau M, He NP, Han XG*, Jiang L*. 2019. Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities. Ecology Letters, 22(4): 563-571.

[6] Zhang XM*, Johnston ER, Wang YS, Yu Q, Tian DS, Wang ZP, Zhang YQ, Gong DZ, Luo C, Liu W, Yang JJ, Han XG. 2019. Distinct drivers of core and accessory components of soil microbial community functional diversity under environmental changes. Msystems, 4(5): e00374-19.

[7] Wang J, Gao YZ*, Zhang YH, Yang JJ, Smith MD, Knapp AK, Eissenstat DM, Han XG*. 2019. Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25: 2958-2969.

[8] Zhang BW, Li WJ, Chen SP*, Tan XR, Wang SS, Chen ML, Ren TT, Xia JY, Huang JH, Han XG. 2019. Changing precipitation exerts greater influence on soil heterotrophic than autotrophic respiration in a semiarid steppe. Agricultural and Forest Meteorology, 271: 413-421.

[9] Zhang BW, Cadotte MW, Chen SP*, Tan XR, You CH, Ren TT, Chen ML, Wang SS, Li WJ, Chu CJ, Jiang L, Bai YF, Huang JH, Han XG. 2019. Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology, 100(11): e02828.

[10] Zhu SS#, Dai GH#, Ma T, Chen LT, Chen DM, Lü XT, Wang XB, Zhu JT, Zhang YJ, Bai YF, Han XG, He JS, Feng XJ*. 2019. Distribution of lignin phenols in comparison with plant-derived lipids in the alpine versus temperate grassland soils. Plant and Soil, 439(1-2): 325-338.

[11] Wu HH, Lü LY, Zhang YL, Xu C, Yang H, Zhou W, Wang WQ, Zhao LR, He NP*, Smith MD, Han XG, Hartley LP, Yu Q*. 2019. Sediment addition and legume cultivation result in sustainable, long‐term increases in ecosystem functions of sandy grasslands. Land Degradation & Development, 30(14): 1667-1676.

[12] Wang XG, Lü XT*, Dijkstra FA, Zhang HY, Wang XB, Wuyunna, Wang ZW, Feng J, Han XG. 2019. Changes of plant N:P stoichiometry across a 3000-km aridity transect in grasslands of northern China. Plant and Soil, 443(1-2): 107-119.

[13] Wang XB, Hsu CM, Dubeux JCB Jr, Mackowiak C, Blount A, Han XG, Liao HL*. 2019. Effects of rhizoma peanut cultivars (Arachis glabrata Benth.) on the soil bacterial diversity and predicted function in nitrogen fixation. Ecology and Evolution, 9(22): 12676-12687.

[14] Ma T#, Dai GH#, Zhu SS, Chen DM, Chen LT, Lu XT, Wang XB, Zhu JT, Zhang YJ, Ma WH, He JS, Bai YF, Han XG, Feng XJ*. 2019. Distribution and Preservation of Root- and Shoot-Derived Carbon Components in Soils Across the Chinese-Mongolian Grasslands. Journal of Geophysical Research-Biogeosciences, 124(2): 420-431.

[15] Luo WT, Zuo XA*, Griffin-Nolan RJ, Xu C, Ma W, Song L, Helsen K, Lin YC, Cai JP, Yu Q, Wang ZW*, Smith MD, Han XG, Knapp AK. 2019. Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 442(1-2): 343-353.

[16] Lü XT*, Hu YY, Wolf AA, Han XG. 2019. Species richness mediates within-species nutrient resorption: Implications for the biodiversity-productivity relationship. Journal of Ecology, 107(5): 2346-2352.

[17] Li TP#, Liu HY#, Wang RZ*, Lü XT, Yang JJ, Zhang YH, He P, Wang ZR, Han XG, Jiang Y*. 2019. Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe. Biogeosciences, 16(14): 2891-2904.

[18] Hou JF*, Dijkstra FA, Zhang XW, Wang C, Lü XT, Wang P, Han XG, Cheng WX*. 2019. Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China. PeerJ, 7: e6712.

[19] Komatsu KJ*, Avolio ML, Lemoine NP, Isbell F, Grman E, Houseman G, Koerner SE, Johnson DS, Wilcox KR, Alatalo JM, Anderson JP, Aerts R, Baer SG, Baldwin AH, Bates J, Beierkuhnlein C, Beloter R, Blair J, Bloor JMG, Bohlen PJ, Bork EW, Boughton EH, Bowman WD, Britton AJ, Cahill JF Jr, Chaneton E, Chiariello NR, Cheng J, Collins SL, Cornelissen JC, Du GZ, Eskelinen A, Firn J, Foster B, Gough L, Gross K, Hallett LM, Han XG, Harmens H, Hovenden MJ, Jagerbrand A, Jentsch A, Kern C, Klanderud K, Knapp AK, Kreyling J, Li W, Luo YQ, McCulley RL, McLaren JR, Megonigal JP, Morgan JW, Onipchenko V, Pennings SC, Prevey JS, Price JN, Reich PB, Robinson CH, Russell FL, Sala OE, Seabloom EW, Smith MD, Soudzilovskaia NA, Souza L, Suding K, Suttle KB, Svejcar T, Tilman D, Tognetti P, Turkington R, White S, Xu ZW, Yahdjian L, Yu Q, Zhang PF, Zhang YH. 2019. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 116(36): 17867-17873.

[20] Hou SL, Lü XT*, Yin JX, Yang JJ, Hu YY, Wei HW, Zhang ZW, Yang GJ, Liu ZY, Han XG. 2019. The relative contributions of intra- and inter-specific variation in driving community stoichiometric responses to nitrogen deposition and mowing in a grassland. Science of the Total Environment, 666: 887-893.

[21] 赵芳媛, 吕晓涛, 魏存争*, 韩兴国. 2019. 内蒙古草原不同基因组大小植物对氮水添加的响应. 应用生态学报, 30(8): 2675-2681.

[22] 王聪, 伍星, 傅伯杰, 韩兴国, 陈亚宁, 王克林, 周华坤, 冯晓明, 李宗善. 2019. 重点脆弱生态区生态恢复模式现状与发展方向. 生态学报, 39(20): 7333-7343.

[23] 李昂, 王扬, 薛建国, 任婷婷, 魏存争, 田秋英, 白文明, 白永飞