- 杨元合,博士学历,博士学位
- 研 究 组 : 高寒生态格局与过程研究组
- 民 族: 蒙古
- 研究领域:
- 籍 贯: 青海省乐都县
- 导师资格: 博士生导师
- 出生年月: 1981.08
- 职 称: 研究员
- 毕业院校: 北京大学
- 入职时间: 2012.7
- 毕业时间: 2008.7
- 办公电话: 010-62836638
- 电子邮件: yhyang@ibcas.ac.cn
- 学习工作经历
- 科研项目
- 论文专著
- 所获奖励
-
学习经历
1999.09-2003.07 北京大学,学士
2003.09-2008.07 北京大学,博士
工作经历
2008.09-2011.03 美国俄克拉荷马大学,Post-doc Research Fellow
2011.07-2012.06 英国阿伯丁大学,Honorary Research Fellow
2012.07-至今 中国科学院植物研究所,研究员
任职经历
目前担任植被与环境变化重点实验室主任、北京生态学学会理事长、中国生态学学会常务理事、中国植物学会/中国青藏高原研究会理事、Journal of Plant Ecology共同主编、Journal of Integrative Plant Biology/《植物生态学报》副主编、National Science Review青年编委等学术职务。
-
[1] 科技部国家重点研发计划项目(2022YFF0801900),“我国冻土生态系统碳氮磷循环过程、机理及演化趋势”,项目主持人,在研;
[2] 中国科学院战略性先导科技专项项目(XDA26020000),“天然草地恢复技术与近顶极群落构建”,项目主持人,在研;
[3] 国家自然科学基金基础科学中心项目(31988102),“生态系统对全球变化的响应”,项目骨干,在研。
-
代表性论文(#共同第一作者,*标记为通讯作者):
2023
[1]Yang GB, Zheng ZH, Abbott BW, Olefeldt D, Knoblauch C, Song YT, Kang LY, Qin SQ, Peng YF, and Yang YH*, 2023. Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau. Nature Communications. 14: 3121.
[2]Li ZL#, Xu WJ#, Kang LY, Kuzyakov Y, Chen LY, He M, Liu FT, Zhang DY, Zhou W, Liu XN, and Yang YH*, 2023. Accelerated organic matter decomposition in thermokarst lakes upon carbon and phosphorus inputs. Global Change Biology, 29: 6367-6382.
[3]He M, Li QL, Chen LY, Qin SQ, Kuzyakov Y, Liu Y, Zhang DY, Feng XH, Kou D, Wu TH, and Yang YH*, 2023. Priming effect stimulates carbon release from thawed permafrost. Global Change Biology, 29: 4638-4651.
[4]Zhang DY, Wang L, Qin SQ, Kou D, Wang SY, Zheng ZH, Peñuelas J, and Yang YH*, 2023. Microbial nitrogen and phosphorus co-limitation across permafrost region. Global Change Biology, 29: 3910-3923.
[5]Mao C#, Song YT#, Peng YF, Kang LY, Li ZL, Zhou W, Liu XN, Liu FT, Zhu GB, and Yang YH*, 2023. Patterns and drivers of anaerobic nitrogen transformations in sediments of thermokarst lakes. Global Change Biology, 29: 2697-2713.
[6]Wei B, Zhang DY, Wang GQ, Liu Y, Li QL, Zheng ZH, Yang GB, Peng YF, Niu KC, and Yang YH*, 2023. Experimental warming altered plant functional traits and their coordination in a permafrost ecosystem. New Phytologist, 240: 1802-1816.
[7]Bai YX, Peng YF, Zhou W, Xie YH, Li QL, Yang GB, Chen LY, Zhu B, and Yang YH*, 2023. SWAMP: A new experiment for simulating permafrost warming and active layer deepening on the Tibetan Plateau. Methods in Ecology and Evolution, 14: 1732-1746.
[8]Kang LY, Chen LY, Li ZL, Wang JJ, Xue K, Deng Y, Delgado-Baquerizo M, Song YT, Zhang DY, Yang GB, Zhou W, Liu XN, Liu FT, and Yang YH*, 2023. Patterns and drivers of prokaryotic communities in thermokarst lake water across the Northern Hemisphere. Global Ecology and Biogeography, 32: 2244-2256.
[9]彭云峰, 常锦峰, 赵霞, 石岳, 白宇轩, 李秦鲁, 姚世庭, 马文红, 方精云, 杨元合*, 2023. 中国草地生态系统固碳能力及其提升途径. 中国科学基金, 37: 587-602.
[10] 杨元合*, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰, 2023. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制. 植物生态学报, 47: 1-24.
2022
[11] Liu FT, Qin SQ, Fang K, Chen LY, Peng YF, Smith P, and Yang YH*, 2022. Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw. Nature Communications, 13: 5073.
[12] He M, Fang K, Chen LY, Feng XH, Qin SQ, Kou D, He HB, Liang C, and Yang YH*, 2022. Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Global Change Biology, 28: 936-949.
[13] Feng XH, Qin SQ, Zhang DY, Chen PD, Hu J, Wang GQ, Liu Y, Wei B, Li QL, Yang YH*, and Chen LY*, 2022. Nitrogen input enhances microbial carbon use efficiency by altering plant-microbe-mineral interactions. Global Change Biology, 28: 4845-4860.
[14] Li QL, Liu Y, Kou D, Peng YF*, and Yang YH*, 2022. Substantial non-growing season carbon dioxide loss across Tibetan alpine permafrost region. Global Change Biology, 28: 5200-5210.
[15] Wang GQ, Chen LY, Zhang DY, Qin SQ, Peng YF, Yang GB, Wang J, Yu JC, Wei B, Liu Y, Li QL, Kang LY, Wang YY, and Yang YH*, 2022. Divergent trajectory of soil autotrophic and heterotrophic respiration upon permafrost thaw. Environmental Science & Technology, 56: 10483-10493.
[16] Kang LY, Chen LY, Zhang DY, Peng YF, Song YT, Kou D, Deng Y and Yang YH*, 2022. Stochastic processes regulate belowground community assembly in alpine grasslands on the Tibetan Plateau. Environmental Microbiology, 24: 179-194.
[17] Yang YH#, Shi Y#, Sun WJ#, Chang JF#, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, Peng YF, Zhao X, Wang XP, Hu HF, Chen SP, Huang M, Wen XF, Wang SP, Zhu B, Niu SL, Tang ZY, Liu LL, and Fang JY*, 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China: Life Science, 65: 861-895.
[18] Wei B, Zhang DY, Kou D, Yang GB, Liu FT, Peng YF, and Yang YH*, 2022. Decreased ultraviolet radiation and decomposer biodiversity inhibit litter decomposition under continuous nitrogen inputs. Functional Ecology, 36: 998-1009.
[19] Li ZL, Zhang DY, Peng YF, Qin SQ, Wang L, Hou EQ, and Yang YH*, 2022. Divergent drivers of various topsoil phosphorus fractions across Tibetan alpine grasslands. Journal of Geophysical Research: Biogeosciences, 127: e2022JG006795.
2021
[20] Qin SQ, Kou D, Mao C, Chen YL, Chen LY, and Yang YH*, 2021. Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. Science Advances, 7: eabe3596.
[21] Chen LY, Fang K, Wei B, Qin SQ, Feng XH, Hu TY, Ji CJ, and Yang YH*, 2021. Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 24: 1018-1028.
[22] Yang GB, Peng YF, Abbott BW, Biasi C, Wei B, Zhang DY, Wang J, Yu JC, Li F, Wang GQ, Kou D, Liu FT, and Yang YH*, 2021. Phosphorus rather than nitrogen regulates ecosystem carbon dynamics after permafrost thaw. Global Change Biology, 27: 5818-5830.
[23] Liu FT, Kou D, Chen YL, Xue K, Ernakovich JG, Chen LY, Yang GB, and Yang YH*, 2021. Altered microbial structure and function after thermokarst formation. Global Change Biology, 27: 823-835.
[24] Chen YL#, Liu FT #, Kang LY, Zhang DY, Kou D, Mao C, Qin SQ, Zhang QW, and Yang YH*, 2021. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biology, 27: 3218-3229.
[25] Song YT, Chen LY, Kang LY, Yang GB, Qin SQ, Zhang QW, Mao C, Kou D, Fang K, Feng XH, and Yang YH*, 2021. Methanogenic community, CH4 production potential and its determinants in the active layer and permafrost deposits on the Tibetan Plateau. Environmental Science & Technology, 55: 11412-11423.
[26] Fang K, Chen LY, Qin SQ, Zhang QW, Liu XN, Chen PD and Yang YH*, 2021. Mineral and climatic controls over soil organic matter stability across the Tibetan alpine permafrost region. Global Biogeochemical Cycles, 35: e2021GB007118.
[27] Zhang DY, Peng YF, Li F, Yang GB, Wang J, Yu JC, Zhou GY, and Yang YH*, 2021. Changes in above/belowground biodiversity and plant functional composition mediate soil respiration response to nitrogen input. Functional Ecology, 35:1171-1182.
[28] Mao C, Kou D, Peng YF, Qin SQ, Zhang QW, and Yang YH*, 2021. Soil nitrogen transformations respond diversely to multiple levels of nitrogen addition in a Tibetan alpine steppe. Journal of Geophysical Research: Biogeosciences, 126: e2020JG006211.
[29] Zhang DY, Peng YF, Li F, Yang GB, Wang J, Yu JC, Zhou GY, and Yang YH*, 2021. Above- and belowground resource acquisition strategies determine plant species responses to nitrogen enrichment. Annals of Botany, 128: 31-44.
2020
[30] Kou D, Yang GB, Li F, Feng XH, Zhang DY, Mao C, Zhang QW, Peng YF, Ji CJ, Zhu QA, Fang YT, Liu XY, Xu-Ri, Li SQ, Deng J, Zheng XH, Fang JY, and Yang YH*, 2020. Progressive nitrogen limitation across the Tibetan alpine permafrost region. Nature Communications, 11: 3331.
[31] Mao C, Kou D, Chen LY, Qin SQ, Zhang DY, Peng YF, and Yang YH*, 2020. Permafrost nitrogen status and its determinants on the Tibetan Plateau. Global Change Biology, 26: 5290-5302.
[32] Li F, Peng YF, Chen LY, Yang GB, Abbott BW, Zhang DY, Fang K, Wang GQ, Wang J, Yu JC, Liu L, Zhang QW, Chen KL, Mohammat A, and Yang YH*, 2020. Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem. Functional Ecology, 34: 911-922.
[33] Peng YF, Chen HYH, and Yang YH*, 2020. Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Functional Ecology, 34: 1979-1990.
[34] Li F, Yang GB, Peng YF, Wang GQ, Qin SQ, Song YT, Fang K, Wang J, Yu JC, Liu L, Zhang DY, Chen KL, Zhou GY, and Yang YH*, 2020. Warming effects on methane fluxes differ between two alpine grasslands with contrasting soil water status. Agricultural and Forest Meteorology, 290: 107988.
2019
[35] Qin SQ, Chen LY, Fang K, Zhang QW, Wang J, Liu FT, Yu JC, and Yang YH*, 2019. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances, 5: eaau1218.
[36] Chen LY #, Liu L#, Qin SQ, Yang GB, Fang K, Zhu B, Kuzyakov Y, Chen PD, Xu YP, and Yang YH*, 2019. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, 10: 5112.
[37] Zhang DY, Peng YF, Li F, Yang GB, Wang J, Yu JC, Zhou GY, and Yang YH*, 2019. Trait identity and functional diversity co-drive response of ecosystem productivity to nitrogen enrichment. Journal of Ecology, 107: 2402-2414.
[38] Zhang QW, Yang GB, Song YT, Kou D, Wang GQ, Zhang DY, Qin SQ, Mao C, Feng XH and Yang YH*, 2019. Magnitude and drivers of potential methane oxidation and production across Tibetan alpine permafrost region. Environmental Science & Technology, 53: 14243-14252.
[39] Peng YF, Wang GQ, Li F, Yang GB, Fang K, Liu L, Qin SQ, Zhang DY, Zhou GY, Fang HJ, Liu XJ, Liu CY, and Yang YH*, 2019. Unimodal response of soil methane consumption to increasing nitrogen additions. Environmental Science & Technology, 53: 4150-4160.
[40] Wang GQ, Li F, Peng YF, Yu JC, Zhang DY, Yang GB, Fang K, Wang J, Mohammat A, Zhou GY, Yang YH*, 2019. Responses of soil respiration to experimental warming in an alpine steppe on the Tibetan Plateau. Environmental Research Letters, 14: 094015.
[41] Li F, Peng YF, Zhang DY, Yang GB, Fang K, Wang GQ, Wang J, Yu JC, Zhou GY, and Yang YH*, 2019. Leaf area rather than photosynthesis rate determines the responses of ecosystem productivity to experimental warming in an alpine steppe. Journal of Geophysical Research: Biogeosciences, 124: 2277-2287.
[42] Liu FT, Kou D, Abbott BW, Mao C, Chen YL, Chen LY, and Yang YH*, 2019. Disentangling the effects of climate, vegetation, soil and related substrate properties on the biodegradability of permafrost-derived dissolved organic carbon. Journal of Geophysical Research: Biogeosciences, 124: 3377-3389.
[43] Mao C, Kou D, Wang GQ, Peng YF, Yang GB, Liu FT, Zhang JB, and Yang YH*, 2019. Trajectory of topsoil nitrogen transformations along a thermo-erosion gully on the Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 124: 1342-1354.
[44] Fang K, Qin SQ, Chen LY, Zhang QW, and Yang YH*, 2019. Al/Fe mineral controls on soil organic carbon stock across Tibetan alpine grasslands. Journal of Geophysical Research: Biogeosciences, 124: 247-259.
[45] Chen YL, Kou D, Li F, Ding JZ, Yang GB, Fang K, and Yang YH*, 2019. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions. Plant and Soil, 434: 453-466.
2018
[47] Chen LY, Liu L, Mao C, Qin SQ, Wang J, Liu FT, Blagodatsky S, Yang GB, Zhang QW, Zhang DY, Yu JC, and Yang YH*, 2018. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications, 9: 3951.
[48] Yang GB, Peng YF, Marushchak ME, Chen YL, Wang GQ, Li F, Zhang DY, Wang J, Yu JC, Liu L, Qin SQ, Kou D, and Yang YH*, 2018. Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw. Environmental Science & Technology, 52: 9162-9169.
[49] Yang GB, Peng YF, Olefeldt D, Chen YL, Wang GQ, Li F, Zhang DY, Wang J, Yu JC, Liu L, Qin SQ, Sun TY, and Yang YH*, 2018. Changes in methane flux along a permafrost thaw sequence on the Tibetan Plateau. Environmental Science & Technology, 52: 1244-1252.
[50] Kou D#, Ma WH#, Ding JZ, Zhang BB, Fang K, Hu HF, Yu JC, Wang T, Qin SQ, Zhao X, Fang JY, and Yang YH*, 2018. Dryland soils in northern China sequester carbon during the early-2000s warming hiatus period. Functional Ecology, 32: 1620-1630.
[51] Kou D, Peng YF, Wang GQ, Ding JZ, Chen YL, Yang GB, Fang K, Liu L, Zhang BB, Müller C, Zhang JB*, and Yang YH*, 2018. Diverse responses of belowground internal nitrogen cycling to increasing aridity. Soil Biology and Biochemistry, 116: 189-192.
[52] Liu FT#, Chen LY#, Abbott BW, Xu YP, Yang GB, Kou D, Qin SQ, Strauss J, Wang YH, Zhang BB, and Yang YH*, 2018. Reduced quantity and quality of SOM along a thaw sequence on the Tibetan Plateau. Environmental Research Letters, 13: 104017.
[53] Peng YF, Wang GQ, Li F, Zhou GY, Yang GB, Fang K, Liu L, Qin SQ, Zhang DY, and Yang YH*, 2018. Soil temperature dynamics modulate N2O flux response to multiple nitrogen additions in an alpine steppe. Journal of Geophysical Research: Biogeosciences, 123: 3308-3319.
[54] Liu FT, Chen LY, Zhang BB, Wang GQ, Qin SQ, and Yang YH*, 2018. Ultraviolet radiation rather than inorganic nitrogen increases dissolved organic carbon biodegradability in a typical thermos-erosion gully on the Tibetan Plateau. Science of the Total Environment, 627: 1276-1284.
2017
[55] Ding JZ, Chen LY, Hugelius G, Liu L, Li YN, Qin SQ, Zhang BB, Yang GB, Li F, Fang K, Chen YL, Peng YF, Zhao X, Ji CJ, He HL, Smith P, Fang JY, and Yang YH*, 2017. Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10: 420-424.
[56] Li F#, Peng YF#, Natali SM, Chen KL, Han TF, Yang GB, Ding JZ, Zhang DY, Wang GQ, Wang J, Yu JC, Liu FT, and Yang YH*, 2017. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients. Ecology, 98: 2851-2859.
[57] Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, and Yang YH*, 2017. Linkage of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23: 5249-5259.
[58] Peng YF, Guo DL, and Yang YH*, 2017. Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26: 102-114.
[59] Chen YL, Deng Y, Ding JZ, Hu HW, Xu TL, Li F, Yang GB, and Yang YH*, 2017. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Molecular Ecology, 26: 6608-6620.
[60] Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Mohammat A, and Yang YH*, 2017. Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe. Environmental Research Letters, 12, 024018.
[61] Fang K, Kou D, Wang GQ, Chen LY, Ding JZ, Li F, Yang GB, Qin SQ, Liu L, Zhang QW, and Yang YH*, 2017. Decreased soil cation exchange capacity across northern China’s grasslands over the last three decades. Journal of Geophysical Research: Biogeosciences, 122: 3088-3097.
2016
[62] Chen LY, Liang JY, Qin SQ, Liu L, Fang K, Xu YP, Ding JZ, Li F, Luo YQ, and Yang YH*, 2016. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nature Communications, 7: 13046.
[63] Ding JZ, Li F, Yang GB, Chen LY, Zhang BB, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji CJ, He HL, Smith P, and Yang YH*, 2016. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biology, 22: 2688-2701.
[64] Chen YL, Chen LY, Peng YF, Ding JZ, Li F, Yang GB, Kou D, Liu L, Fang K, Zhang BB, Wang J, and Yang YH*, 2016. Linking microbial C:N:P stoichiometry to microbial community and abiotic factors along a 3500-km grassland transect on the Tibetan Plateau. Global Ecology and Biogeography, 25: 1416-1427.
[65] Ding JZ, Chen LY, Zhang BB, Liu L, Yang GB, Fang K, Chen YL, Li F, Kou D, Ji CJ, Luo YQ, and Yang YH*, 2016. Linking temperature sensitivity of soil CO2 release to substrate, environmental and microbial properties across alpine ecosystems. Global Biogeochemical Cycles, 30: 1310-1323.
[66] Chen YL, Ding JZ, Peng YF, Li F, Yang GB, Liu L, Qin SQ, Fang K, and Yang YH*, 2016. Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. Journal of Biogeography, 43: 2027-2039.
[67] Chen LY#, Li P#, and Yang YH*, 2016. Dynamic patterns of nitrogen: phosphorus ratios in forest soils of China under changing environment. Journal of Geophysical Research: Biogeosciences, 121: 2410-2421.
2015
[68] Chen LY, Smith P, and Yang YH*, 2015. How has soil carbon stock changed over recent decades? Global Change Biology, 21: 3197-3199.
[69] Yang YH*, Ji CJ, Chen L, Ding JZ, Cheng X, and Robinson D. 2015. Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau. Functional Ecology, 29: 839-848.
[70] Yang YH*, Li P, He HL, Zhao X, Datta A, Ma WH, Zhang Y, Liu XJ, Han WX, Wilson MC, and Fang JY, 2015. Long-term changes in soil pH across major forest ecosystems in China. Geophysical Research Letters, 42: 933-940.
2014
[71] Yang YH*, Li P, Ding JZ, Zhao X, Ma WH, Ji CJ, and Fang JY, 2014. Increased topsoil carbon stock across China’s forests. Global Change Biology, 20: 2687-2696.
[72] Yang YH*, Fang JY, Ji CJ, Datta A, Li P, Ma WH, Mohammat A, Shen HH, Hu HF, Knapp BO, and Smith P, 2014. Stoichiometric shifts in surface soils over broad geographical scales: evidence from China’s grasslands. Global Ecology and Biogeography, 23: 947-955.
[73] Xu B#, Yang YH#, Li P, Shen HH, and Fang JY*, 2014. Global patterns of ecosystem carbon flux in forests: A biometric data-based synthesis. Global Biogeochemical Cycles, 28: 962-973.
2013
[74] Yang YH*, Ji CJ, Robinson D, Zhu B, Fang HJ, Shen HH, and Fang JY, 2013. Vegetation and soil 15N natural abundance in alpine grasslands on the Tibetan Plateau: patterns and implications. Ecosystems, 16: 1013-1024.
2012及以前
[75] Yang YH*, Fang JY, Ji CJ, Ma WH, Mohammat A, Wang SF, Wang SP, Datta A, Robinson D, and Smith P, 2012. Widespread decreases in topsoil inorganic carbon stocks across China’s grasslands during 1980s-2000s. Global Change Biology, 18: 3672-3680.
[76] Yang YH*, Ji CJ, Ma WH, Wang SF, Wang SP, Han WX, Mohammat A, Robinson D, and Smith P, 2012. Significant soil acidification across northern China’s grasslands during 1980s-2000s. Global Change Biology, 18: 2292-2300.
[77] Yang YH*, Luo YQ, and Finzi A, 2011. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytologist, 190: 977-989.
[78] Yang YH* and Luo YQ, 2011. Isometric biomass partitioning pattern in forest ecosystems: evidence from temporal observations during stand development. Journal of Ecology, 99: 431-437.
[79] Lu Meng#, Yang YH#, Luo YQ*, Fang CM, Zhou XH, Chen JK, Yang X, and Li B*, 2011. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189: 1040-1050.
[80] Yang YH, Fang JY*, Ma WH, Smith P, Mohammat A, Wang SP, and Wang W, 2010. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biology, 16: 3036-3047.
[81] Yang YH*, Fang JY, Ji CJ, Ma WH, Su SS, and Tang ZY, 2010. Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochemical Cycles, 24: GB4022.
[82] Yang YH*, Fang JY, Fay PA, Bell JE, and Ji CJ, 2010. Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophysical Research Letters, 37: L15702.
[83] Yang YH, Fang JY*, Ma WH, Guo DL, and Mohammat A, 2010. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography, 19: 268-277.
[84] Yang YH, Fang JY*, Ma WH, and Wang W, 2008. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters, 35: L23710.
-
1. 何梁何利基金科学与技术创新奖 (2022)
2. 科学探索奖 (2022)
3. 中国青年科技奖 (2022)
4. 中国科学院青年科学家奖 (2017)
5. 全国优秀博士学位论文 (2010)