中国科学院| 植物所| 中文版| English| 全文检索

科研成果
发表论文

您当前的位置:首页 > 科研成果 > 论文

Coordination of plant functional traits under nitrogen deposition with phosphorus addition in a desert steppe ecosystem
作   者: Liu LR, Xia YF, Sun K, Sun RJ, Xu ZZ*, Zhang F*
期刊名称: Plant Physiology and Biochemistry
影响因子: 6.1
出版年份: 2025
卷 期 号: 223( Coordination of plant functional traits under nitrogen deposition with phosphorus addition in a desert steppe ecosystem)
页     码: 109813
论文摘要:

Understanding how plant functional traits respond to nutrient enrichment becomes more crucial for predicting changes in grassland community composition and functions under global changes. However, it remains unclear how nitrogen (N) and phosphorus (P) additions jointly influence a variety of leaf traits and how they coordinate with contrastingly adaptive mechanisms in arid ecosystems. A two-year field experiment with five N levels and two P treatments was conducted to examine the effects of N and P additions on leaf/community functional traits in a desert steppe. We found N addition significantly affected the other six leaf morphological and nutrient traits except leaf thickness (LT); nitrogen addition remarkably increased leaf nitrogen concentration (Nmass) and decreased C/N with or without P; nitrogen addition profoundly elevated stomatal conductance (gs) but did not obviously affect photosynthetic rate (Aarea) except Tribulus terrestris. Compared to grasses, the annual forb T. terrestris exhibited stronger competitiveness (Nmass, Aarea) with increased N application. Nitrogen addition obviously increased community-weighted means (CWMs) of Nmass, specific leaf area (SLA), plant height, gs and Aarea, improving aboveground biomass (AGB), whereas P addition significantly enhanced CWM of SLA but reduced CWMs of transpiration rate and LT. With increasing N addition rates, dominant S-strategy species (higher LT and C/N) in low-nutrient environments were gradually substituted by R-strategy species (higher Nmass and Aarea) in high-nutrient environments. Our results highlight differential responses of plant functional traits to nutrient enrichment and divergent adaptive strategies among species should be considered when assessing the impacts of global environmental changes on community assembly and functioning.


原文链接:https://www.sciencedirect.com/science/article/pii/S0981942825003419?via%3Dihub