中文版| English

科研成果
发表论文

您当前的位置:首页>科研成果>论文

Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands
作   者:Liu, Ting; Wang, Liang; Feng, Xiaojuan; et.al
期刊名称:BIOGEOSCIENCES
影响因子:4.618
出版年份:2018
卷 期 号:15(5)
页     码:1627-1641
论文摘要:
Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands
due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai–Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72% of
the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7%of NEP in the alpine grasslands(Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15% of NEP at the corresponding
sites, respectively, with dissolved inorganic carbon (DIC, biogenic DICClithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon
degradation (indicated by DIC-13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only
measured as CO2 emission from soils into the atmosphere.
With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.
全文下载:/WebFile/2018/412/20180412132802106.pdf